高中数学名校考前回归知识必备全案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学名校考前回归知识必备全案.doc》由用户(青草浅笑)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 名校 考前 回归 知识 必备 doc 下载 _三轮冲刺_高考专区_数学_高中
- 资源描述:
-
1、1 考前回归考前回归知识必备知识必备 *1 集合与常用逻辑用语集合与常用逻辑用语 集集 合合 与与 常常 用用 逻逻 辑辑 用用 语语 集集 合合 概念概念 = 123 , n a a aa 元素特点:互异性、无序性、确定性。元素特点:互异性、无序性、确定性。 一组对象的全体一组对象的全体. ,xA xA 关系关系 子集子集 的子集有的子集有2n个, 真子集有个, 真子集有21 n 个, 非空个, 非空 真子集有真子集有22 n 个个 A ; ,AB BCAC 真子集真子集 相等相等 ,AB BAAB 运算运算 交集交集 |,xxBxBAA且 【提醒】 :数轴和韦恩图是进行交、并、【提醒】 :
2、数轴和韦恩图是进行交、并、 补运算的有力工具补运算的有力工具. 在具体计算时不要忘了集合本身和在具体计算时不要忘了集合本身和 空集这两种特殊情况,补集思想常运用空集这两种特殊情况,补集思想常运用 于解决否定型或正面较复杂有关问题。于解决否定型或正面较复杂有关问题。 并集并集 |,xxBxBAA或 补集补集 | U x xUC AxA且 常常 用用 逻逻 辑辑 用用 语语 命题命题 概念概念 能够判断真假的语句。能够判断真假的语句。 四种四种 命题命题 原命题:原命题: 若若p,则,则q 逆命题:逆命题: 若若q,则,则p 否命题:否命题: 若若p,则,则q 逆否命题:逆否命题: 若若q,则,则
3、p 充要充要 条件条件 充分条件充分条件 pq ,p是是q的充分条件的充分条件 若命题若命题p对应集合对应集合A,命题,命题q对应集合对应集合 B, 则, 则pq等价于等价于AB,pq等等 价于价于AB。 必要条件必要条件 pq ,q是是p的必要条件的必要条件 充要条件充要条件 pq,, p q互互为充要条件为充要条件 逻辑逻辑 连接词连接词 或命题或命题 pq,, p q有一为真即为真,有一为真即为真,, p q均为假时才为假。均为假时才为假。 类比集合的并类比集合的并 且命题且命题 pq ,, p q均为真时才为真,均为真时才为真,, p q有一为假即为假。有一为假即为假。 类比集合的交类
4、比集合的交 非命题非命题 p和和p为一真一假两个互为对立的命题。为一真一假两个互为对立的命题。 类比集合的补类比集合的补 量词量词 全称量词全称量词 ,含全称量词的命题叫全称命题,其否定为特称命题。,含全称量词的命题叫全称命题,其否定为特称命题。 存在量词存在量词 ,含存在量词的命题叫特称命题,其否定为全称命题。,含存在量词的命题叫特称命题,其否定为全称命题。 命题的否定与否命题命题的否定与否命题 *1.命题命题pq的的否定否定与它的与它的否命题否命题的区别:的区别: 命题命题pq的否定是的否定是pq,否命题否命题是是pq . 命题命题“p或或q”的否定是的否定是“p且且q”,“p且且q”的否
5、定是的否定是“p或或q”. *2.常考模式:常考模式: 全称命题全称命题 p:,( )xM p x ;全称命题;全称命题 p 的否定的否定p:,( )xMp x . 特称命题特称命题 p:, ( )xM p x ;特称命题;特称命题 p 的否定的否定p:,( )xMp x . 【自我反思】【自我反思】 1你知道集合中的元素互异性吗?研究集合一定要首先看清什么?研究集合交、并、补运算时,你你知道集合中的元素互异性吗?研究集合一定要首先看清什么?研究集合交、并、补运算时,你 注意到两种极端情况了吗?你会用补集的思想以及借助于数轴或韦恩图进行解决有关问题吗?注意到两种极端情况了吗?你会用
6、补集的思想以及借助于数轴或韦恩图进行解决有关问题吗? 2存在性命题和全称命题是什么?如何否定?存在性命题和全称命题是什么?如何否定? 命题的否定和否命题一样吗?充分条件、必要条件和命题的否定和否命题一样吗?充分条件、必要条件和 充要条件的概念记住了吗?如何判断?反证法证题的三部曲你还记得吗?充要条件的概念记住了吗?如何判断?反证法证题的三部曲你还记得吗? 注意:注意:如如 “若“若a和和b都是偶数,则都是偶数,则ba是偶数”的否命题是“若是偶数”的否命题是“若a和和b不都是偶数,则不都是偶数,则ba是奇是奇 数”否定是“若数”否定是“若a和和b都是偶数,则都是偶数,则b
7、a是奇数”是奇数” 若若 2x ,则,则2x ;真命题;真命题 互 否 为 逆 为 逆 互 否 互 否 互 否 互 逆 原命题 若 p 则 q 互 逆 逆命题 若 q 则 p 逆否命题 若q则p 逆否命题 若q则p 2 *2.复数复数与与统计与统计案例统计与统计案例 概率概率 复复 数数 复数复数 的概的概 念和念和 运算运算 概念概念 虚数单位虚数单位 规定:规定: 2 1i ;实数可以与它进行四则运算,并且运算时原有的加、;实数可以与它进行四则运算,并且运算时原有的加、 乘运算律仍成立。乘运算律仍成立。 4414243 1,1,() kkkk iii
8、iii k Z。 复数复数 形如形如( ,)abi a bR的数叫做复数,的数叫做复数,a叫做复数的实部,叫做复数的实部,b叫做复数的叫做复数的 虚部。虚部。0b时叫虚数、时叫虚数、0,0ab时叫纯虚数。时叫纯虚数。 复数相等复数相等 ( , , ,),abicdi a b c dac bdR 共轭复数共轭复数 实部相等,虚部互为相反数。即实部相等,虚部互为相反数。即zabi,则,则zabi。 运算运算 加减法加减法 () ()() ()a bicdia cb d i,( , , ,)a b c d R。 乘法乘法 ()()() ()a bi cdiac bdbcad i,( , , ,)a
9、b c d R 除法除法 2222 , , ,()()(0,)a b c d acbdbcda abicdii cdi cdcd R 几 何几 何 意义意义 复数复数zabi 一一对应 复平面内的点复平面内的点( , )Z a b 一一对应 向量向量OZ 向量向量OZ的模叫做复数的模,的模叫做复数的模, 22 zab 主主 要要 性性 质质 复数复数 运算运算 *1.运算律:运算律: mnm n zzz ; () m nmn zz; 1212 ()( ,) mmm zzz zm nN. 【提示】注意复数、向量、导数、三角等运算率的适用范围【提示】注意复数、向量、导数、三角等运算率的适用范围.
10、*2.模的性质:模的性质: 1 212 | |z zzz; 11 22 | | | zz zz ; n n zz. *3.重要结论:重要结论: 2 2 12 z zzz; 2 12ii ; 1 1 i i i , 1 1 i i i ; i性质:性质:T=4;1 , , 1, 4342414 nnnn iiiiii. 【拓展】 :【拓展】 : 32 11101或或 13 i 22 . 统统 计计 与与 统统 计计 案案 例例 统统 计计 随机随机 抽样抽样 简单抽样简单抽样 从总体中逐个抽取且不放回抽取样本的方法。从总体中逐个
11、抽取且不放回抽取样本的方法。 等概率抽样。等概率抽样。 分层抽样分层抽样 将总体分层,按照比例从各层中独立抽取样本的方法。将总体分层,按照比例从各层中独立抽取样本的方法。 系统抽样系统抽样 将总体均匀分段,每段抽取一个样本的方法。将总体均匀分段,每段抽取一个样本的方法。 样本样本 估计估计 总体总体 众数众数 样本数据中出现次数最多的数据。样本数据中出现次数最多的数据。 标准差标准差 2 1 1 () n i i sxx n 中位数中位数 从小到大排序后, 中间的数或者中间两数的平均数。从小到大排序后, 中间的数或者中间两数的平均数。 平均数平均数 12 , n x xx的平均数是
12、的平均数是 12 1 () n xxxx n 。 方差方差 12 , n x xx的平均数为的平均数为x, 22 1 1 () n i i sxx n 。 概概 率率 定义定义 如果随机事件如果随机事件A在在n次试验中发生了次试验中发生了m次,当试验的次数次,当试验的次数n很大时,我们可以将发生的很大时,我们可以将发生的 频率频率 m n 作为事件作为事件A发生的概率的近似值,即发生的概率的近似值,即 m P A n 。 事件事件 关系关系 互斥事件互斥事件 事件事件A和事件和事件B在任何一次实验中不会同时发生在任何一次实验中不会同时发生 类比集合关系。类比集合关系。
13、对立事件对立事件 事件事件A和事件和事件B, 在任何一次实验中有且只有一个发生。, 在任何一次实验中有且只有一个发生。 性质性质 基本性质基本性质 0( )1P A, ()0P , ( )1P 。 互斥事件互斥事件 事件事件,A B互斥,则互斥,则()( )( )P ABP AP B。 古典古典 概型概型 特征特征 基本事件发生等可能性和基本事件的个数有限性基本事件发生等可能性和基本事件的个数有限性 计算公式计算公式 ( ) m P A n ,n基本事件的个数、基本事件的个数、m事件事件A所包含的基本事件个数。所包含的基本事件个数。 几何几何 概型概型 特征特征 基本事
14、件个数的无限性每个基本事件发生的等可能性。基本事件个数的无限性每个基本事件发生的等可能性。 计算公式计算公式 ( ) A P A 构成事件 的测度 试验全部结果所构成的测度 3 3.平面向量平面向量 平平 面面 向向 量量 重重 要要 概概 念念 向量向量 既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。既有大小又有方向的量,表示向量的有向线段的长度叫做该向量的模。 0向量向量 长度为长度为0,方向任意的,方向任意的向量。 【向量。 【0与任一非零向量共线】与任一非零向量共线】 平行向量平行向量 方向相同或者相反的两个非零向量叫做平行向量,也叫共线向量。方向相同或者相反的两个非零
15、向量叫做平行向量,也叫共线向量。 向量的模向量的模 2 22222 |,|axyaaxy 两点间的距离两点间的距离 若若 1122 ,A x yB xy,则,则 22 2121 |ABxxyy 向量夹角向量夹角 起点放在一点的两向量所成的角,范围是起点放在一点的两向量所成的角,范围是0,。, a b的夹角记为的夹角记为, a b。 , a b锐角锐角0a b, a b不同向;不同向;, a b为直角为直角0a b;, a b钝角钝角0a b , a b不反向不反向. 向量的夹角带有方向性:向量是有方向的,向量间的夹角表示两个向量正方向的夹角向量的夹角带有方向性:向量是有方向的,向量间的夹角表示
16、两个向量正方向的夹角 投影投影 , a b,cosb叫做叫做b在在a方向上的投影。 【注意:投影是数量】方向上的投影。 【注意:投影是数量】 重重 要要 法法 则则 定定 理理 基本定理基本定理 12,e e不共线,存在唯一的实数对不共线,存在唯一的实数对( ,) ,使,使12aee。若。若12,e e为为, x y轴轴 上的单位正交向量,上的单位正交向量,( ,) 就是向量就是向量a的坐标。的坐标。 一般表示一般表示 坐标表示坐标表示 共线条件共线条件 / /ab(0b共共线线存在唯一实数存在唯一实数,ab 121 2 x yy x0 垂直条件垂直条件 0aba b。 1122 0x yx
17、y。 各各 种种 运运 算算 加法加法 运算运算 法则法则 设设,ABa BCb,那么向量,那么向量AC叫做叫做a与与b的和,即的和,即 abABBCAC ; 向量加法的三角形法则可推广至多个向向量加法的三角形法则可推广至多个向 量相加:量相加: AB BCCD PQQRAR,但这时,但这时 必须必须“首尾相连首尾相连” 。” 。 1212 (,)abxx yy。 算律算律 交换律交换律abba ,结合律结合律()()abcabc 减法减法 运算运算 法则法则 用“三角形法则” :设用“三角形法则” :设,ABa ACbab那么 ABACCA,由减向量的终点指向被减向量的终点。,由
18、减向量的终点指向被减向量的终点。 注意:此处减向量与被减向量的起点相同。注意:此处减向量与被减向量的起点相同。 1212 (,)abxx yy 数乘数乘 运算运算 概念概念 a为向量,为向量,0与与a方向相同,方向相同, 0与与a方向相反,方向相反,aa。 (,)axy 算律算律 分配律分配律aa)()(,aaa)(, 分配律分配律baba )( 与数乘运算有同样的坐标与数乘运算有同样的坐标 表示。表示。 数量数量 积运积运 算算 概念概念 cos,a ba ba b 1 212 a bx xy y。 主要主要 性质性质 2 a aa,|ab|a|b| 2 22222 |,|axyaaxy 算
19、律算律 a bb a,分配律分配律()ab ca cb c,()()()a baba b。 算律算律 向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一向量运算和实数运算有类似的地方也有区别:对于一个向量等式,可以移项,两边平方、两边同乘以一 个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量,个实数,两边同时取模,两边同乘以一个向量,但不能两边同除以一个向量,即两边不能约去一个向量, 切记两向量不能相除切记两向量不能相除( (相约相约) ); (2 2)()()a b ca b c 向向 量量 的的 表表 示示
20、方方 法法 几何表示法几何表示法 用带箭头的有向线段表示,如用带箭头的有向线段表示,如AB,注意起点在前,终点在后;,注意起点在前,终点在后; 符号表示法符号表示法 用一个小写的英文字母来表示,如用一个小写的英文字母来表示,如a,b,c等;等; 坐标表示法坐标表示法 在平面内建立直角坐标系,以与在平面内建立直角坐标系,以与x轴、轴、y轴方向相同的两个单位向量轴方向相同的两个单位向量i,j为基底,则平面内为基底,则平面内 的任一向量的任一向量a可表示为可表示为,axiy jx y, 称, 称, x y为向量为向量a的坐标,的坐标,a, x y叫做向量叫做向量a的的 坐标表示。如果坐标表示。如果向
21、量的起点在原点向量的起点在原点,那么向量的坐标与向量的终点坐标相同。,那么向量的坐标与向量的终点坐标相同。 三角形的五个“心”三角形的五个“心” 重心:三角形三条中线交点重心:三角形三条中线交点. .外心:三角形三边外心:三角形三边垂直平分线相交于一点垂直平分线相交于一点. .内心:三角形三内角的平分线相交于一点内心:三角形三内角的平分线相交于一点. . 垂心:三角形三边上的高相交于一点垂心:三角形三边上的高相交于一点. .旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点. . 4 *4.不等式、线性规
22、划不等式、线性规划 同同 向向 不不 等等 式式 ab bcac , 00abcacbcabcacbc,;,; ab cdacbd , 00abcdacbd, 两个实数的顺序关系:两个实数的顺序关系: 0aba b 0aba b 取倒数法则取倒数法则0ab, 11 ab ab * 01 nn nn abnnabab N,; 基基 本本 不不 等等 式式 最值最值 定理定理 , 0,2x yxyxy由 ,若积,若积()xyP定值,则当,则当xy时和时和xy有最小值有最小值2 p; , 0,2x yxyxy由 ,若和,若和()xyS定值,则当,则当xy是积是积xy有最大值有
23、最大值 2 1 4 s . 【推广】 :已【推广】 :已知知Ryx,,则有,则有xyyxyx2)()( 22 . (1)若积)若积xy是定值,则当是定值,则当|yx 最大时,最大时,|yx 最大;当最大;当|yx 最小时,最小时,|yx 最小最小. (2)若和)若和|yx 是定值,则当是定值,则当|yx 最大时,最大时,| xy最小;当最小;当|yx 最小时,最小时,| xy最大最大 均值均值 不等不等 式式 平方平均平方平均算术平均算术平均几何平均几何平均调和平均调和平均 22 2 () 22 abab ab ( ,a bR当且仅当当且仅当ab取取“”) 22 22 “ ” 11 22 ab
展开阅读全文