专题四-第2讲2020高考数学逆袭概率与统计课件.pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《专题四-第2讲2020高考数学逆袭概率与统计课件.pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 2020 高考 数学 概率 统计 课件 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、第2讲概率与统计(大题)板块二专题四概率与统计NEIRONGSUOYIN内容索引热点分类突破真题押题精练1PART ONE热点一以二项分布为背景的期望与方差热点二以超几何分布为背景的期望与方差热点三统计与统计案例的交汇问题热点一以二项分布为背景的期望与方差利用二项分布解题的一般步骤:(1)根据题意设出随机变量.(2)分析随机变量服从二项分布.(3)找到参数n,p.(4)写出二项分布的概率表达式.(5)求解相关概率.例1(2019怀化模拟)在全国第五个“扶贫日”到来之际,某省开展“精准脱贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.A镇有基层干部60人,B镇有基层干部60人,C镇
2、有基层干部80人,每人走访了不少贫困户.按照分层抽样,从A,B,C三镇共选40名基层干部,统计他们走访贫困户的数量,并将走访数量分成5组,5,15),15,25),25,35),35,45),45,55,绘制成如下频率分布直方图.(1)求这40人中有多少人来自C镇,并估计三镇基层干部平均每人走访多少贫困户.(同一组中的数据用该组区间的中点值作代表);解因为A,B,C三镇分别有基层干部60人,60人,80人,共200人,利用分层抽样的方法选40人,所以这40人中有16人来自C镇,所以三镇基层干部平均每人走访贫困户28.5户.(2)如果把走访贫困户达到或超过25户视为工作出色,以频率估计概率,从三
3、镇的所有基层干部中随机选取3人,记这3人中工作出色的人数为X,求X的分布列及期望.解由直方图得,从三镇的所有基层干部中随机选出1人,所以X的分布列为跟踪演练1(2019河北省五个一名校联盟联考)山东省高考改革试点方案规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A,B,B,C,C,D,D,E共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%,7%,16%,24%,24%,16%,7%,3%.选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等
4、比例转换法则,分别转换到91,100,81,90,71,80,61,70,51,60,41,50,31,40,21,30八个分数区间,得到考生的等级成绩.某校高一年级共2 000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,169).(1)求物理原始成绩在区间(47,86的人数;解因为物理原始成绩N(60,132),所以P(4786)P(4760)P(6086)0.818 6.所以物理原始成绩在(47,86的人数为2 0000.818 61 637.(2)按高考改革方案,若从全省考生中随机抽取3人,记X表示这3人中等级成绩在区间61,8
5、0的人数,求X的分布列和期望.(附:若随机变量N(,2),则P()0.682 7,P(22)0.954 5,P(33)0.997 3)所以X的分布列为热点二以超几何分布为背景的期望与方差求超几何分布的分布列的一般步骤:(1)确定参数N,M,n的值.(2)明确随机变量的所有可能取值,并求出随机变量取每一个值时对应的概率.(3)列出分布列.例2(2019茂名质检)2018年茂名市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93.(1)求该样本的中
6、位数和方差;解样本数据按从小到大的顺序排列为59,67,73,76,78,81,82,84,85,86,93,96.(2)若把成绩不低于85分(含85分)的作品认为是优秀作品,现在从这12件作品中任意抽取3件,求抽到优秀作品的件数的分布列和期望.解设抽到优秀作品的个数为X,则X的可能值为0,1,2,3,所以X的分布列为跟踪演练2(2019天津市十二重点中学联考)某大学在一次公益活动中聘用了10名志愿者,他们分别来自于A,B,C三个不同的专业,其中A专业2人,B专业3人,C专业5人,现从这10人中任意选取3人参加一个访谈节目.(1)求3个人来自两个不同专业的概率;解令事件A表示“3个人来自于两个
7、不同专业”,A1表示“3个人来自于同一个专业”,A2表示“3个人来自于三个不同专业”,3个人来自两个不同专业的概率(2)设X表示取到B专业的人数,求X的分布列与期望.解随机变量X的取值为0,1,2,3,X的分布列为热点三统计与统计案例的交汇问题1.解决回归分析问题要注意:(2)利用回归直线方程只能进行预测与估计,而得不到准确数值.2.解决统计案例问题关键是过好三关:(1)假设关,即假设两个分类变量无关.(2)应用公式关,把相关数据代入独立性检测公式求出K2的观测值k.(3)对比关,将k与临界值进行对比,进而作出判断.例3(2018全国)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产
展开阅读全文