高考数学二轮复习-专题五-立体几何-52-空间中的平行课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考数学二轮复习-专题五-立体几何-52-空间中的平行课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 数学 二轮 复习 专题 立体几何 52 空间 中的 平行 课件 下载 _二轮专题_高考专区_数学_高中
- 资源描述:
-
1、高频考点核心归纳5.2空间中的平行与垂直考情分析高频考点-2-2-2-2-考情分析高频考点-3-3-3-3-命题热点一命题热点二命题热点三线线、线面平行或垂直的判定与性质【思考】判断或证明线面、线线平行或垂直的常用方法有哪些?例1(2018全国,文19)如图,在三棱锥P-ABC中,AB=BC=,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.考情分析高频考点-4-4-4-4-命题热点一命题热点二命题热点三考情分析高频考点-5-5-5-5-命题热点一命题热点二命题热点三考情分析高频考点-6-6-6-6-命题
2、热点一命题热点二命题热点三题后反思1.解决此类问题要注意线线平行(垂直)、线面平行(垂直)与面面平行(垂直)的相互转化.在解决线线平行、线面平行问题时,若题目中已出现了中点,可考虑在图形中再取中点,构成中位线进行证明.2.要证线面平行,先在平面内找一条直线与已知直线平行,或找一个经过已知直线与已知平面相交的平面,找出交线,证明两线平行.3.要证线线平行,可考虑公理4或转化为线面平行.4.要证线面垂直可转化为证明线线垂直,应用线面垂直的判定定理与性质定理进行转化.考情分析高频考点-7-7-7-7-命题热点一命题热点二命题热点三对点训练1如图,菱形ABCD的对角线AC与BD交于点O,点E,F分别在
3、AD,CD上,AE=CF,EF交BD于点H.将DEF沿EF折到DEF的位置.(1)证明:ACHD;(2)若AB=5,AC=6,求五棱锥D-ABCFE的体积.考情分析高频考点-8-8-8-8-命题热点一命题热点二命题热点三考情分析高频考点-9-9-9-9-命题热点一命题热点二命题热点三考情分析高频考点-10-10-10-10-命题热点一命题热点二命题热点三面面平行或垂直的判定与性质【思考】判定面面平行或垂直有哪些基本方法?例2如图,在四棱锥P-ABCD中,ABCD,且BAP=CDP=90.(1)证明:平面PAB平面PAD;(2)若PA=PD=AB=DC,APD=90,且四棱锥P-ABCD 的体积
4、为 ,求该四棱锥的侧面积.考情分析高频考点-11-11-11-11-命题热点一命题热点二命题热点三(1)证明 由已知BAP=CDP=90,得ABAP,CDPD.由于ABCD,故ABPD,从而AB平面PAD.又AB平面PAB,所以平面PAB平面PAD.(2)解 在平面PAD内作PEAD,垂足为E.由(1)知,AB平面PAD,故ABPE,可得PE平面ABCD.考情分析高频考点-12-12-12-12-命题热点一命题热点二命题热点三题后反思1.判定面面平行的四个方法:(1)利用定义,即判断两个平面没有公共点;(2)利用面面平行的判定定理;(3)利用垂直于同一条直线的两平面平行;(4)利用平面平行的传
5、递性,即两个平面同时平行于第三个平面,则这两个平面平行.2.面面垂直的证明方法:(1)用面面垂直的判定定理,即证明其中一个平面经过另一个平面的一条垂线;(2)用面面垂直的定义,即证明两个平面所成的二面角是直二面角.3.从解题方法上说,由于线线平行(垂直)、线面平行(垂直)、面面平行(垂直)之间可以相互转化,因此整个解题过程始终沿着线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转化途径进行.考情分析高频考点-13-13-13-13-命题热点一命题热点二命题热点三对点训练2(2018全国,文18)如图,在平行四边形ABCM中,AB=AC=3,ACM=90.以AC为折痕将ACM折起,使点M到
6、达点D的位置,且ABDA.(1)证明:平面ACD平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积.考情分析高频考点-14-14-14-14-命题热点一命题热点二命题热点三考情分析高频考点-15-15-15-15-命题热点一命题热点二命题热点三平行、垂直关系及体积中的探索性问题【思考】解决探索性问题的基本方法有哪些?例3(2018全国,文19)如图,矩形ABCD所在平面与半圆弧 所在平面垂直,M是 上异于C,D的点.(1)证明:平面AMD平面BMC.(2)在线段AM上是否存在点P,使得MC平面PBD?说明理由.考情分析高频考点-16-16-1
展开阅读全文