高二数学--选修2-3第三章-统计案例课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二数学--选修2-3第三章-统计案例课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 选修 第三 统计 案例 课件 下载 _其他_数学_高中
- 资源描述:
-
1、3.2独立性检验的独立性检验的基本思想及其初基本思想及其初步应用(一)步应用(一)高二数学高二数学 选修选修2-32-3 第三章第三章 统计案例统计案例2 2定量变量回归分析(画散点图、相关系数r、定量变量回归分析(画散点图、相关系数r、变量 相关指数R、残差分析)变量 相关指数R、残差分析)分类变量分类变量研究两个变量的相关关系:定量变量:体重、身高、温度、考试成绩等等。定量变量:体重、身高、温度、考试成绩等等。变量 分类变量:性别、是否吸烟、是否患肺癌、变量 分类变量:性别、是否吸烟、是否患肺癌、宗教信仰、国籍等等。宗教信仰、国籍等等。两种变量:独立性检验独立性检验本节研究的是两个分类变量
2、的独立性检验问题。在日常生活中,我们常常关心在日常生活中,我们常常关心分类变量之间是否有关系分类变量之间是否有关系:例如,吸烟是否与患肺癌有关系?例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等。性别是否对于喜欢数学课程有影响?等等。吸烟与肺癌列联表吸烟与肺癌列联表不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟77757775424278177817吸烟吸烟20992099494921482148总计总计98749874919199659965为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机为了调查吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了地调查了99659965人,得到
3、如下结果(单位:人)人,得到如下结果(单位:人)列联表列联表在不吸烟者中患肺癌的比重是在不吸烟者中患肺癌的比重是 在吸烟者中患肺癌的比重是在吸烟者中患肺癌的比重是 说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患说明:吸烟者和不吸烟者患肺癌的可能性存在差异,吸烟者患肺癌的可能性大。肺癌的可能性大。0.54%0.54%2.28%2.28%探究探究不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟7775427817吸烟吸烟2099492148总计总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟0800070006000500040
4、00300020001000从三维柱形图能清晰看出从三维柱形图能清晰看出各个频数的相对大小。各个频数的相对大小。从二维条形图能看出,吸烟者中从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例。患肺癌的比例高于不患肺癌的比例。通过图形直观判断两个分类变量是否相关:不吸烟吸烟00.10.20.30.40.50.60.70.80.91不吸烟不吸烟吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达了两种情况下患肺癌的比例。上面我们通过分析数据和图形,得到的直观印象是吸烟和上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?患肺癌有关,那么事实是
5、否真的如此呢?这需要用统计观点这需要用统计观点来考察这个问题。来考察这个问题。现在想要知道能够以多大的把握认为现在想要知道能够以多大的把握认为“吸烟与患肺癌有关吸烟与患肺癌有关”,为此先假设为此先假设 H0:吸烟与患肺癌没有关系:吸烟与患肺癌没有关系.不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟aba+b吸烟吸烟cdc+d总计总计a+cb+da+b+c+d把表中的数字用字母代替,得到如下用字母表示的列联表把表中的数字用字母代替,得到如下用字母表示的列联表 用用A表示不吸烟,表示不吸烟,B表示不患肺癌,则表示不患肺癌,则“吸烟与患肺癌没有关系吸烟与患肺癌没有关系”等价于等价于“吸烟与患肺癌独
6、立吸烟与患肺癌独立”,即假设,即假设H0等价于等价于 P(AB)=P(A)P(B).因此因此|ad-bc|越小,说明吸烟与患肺癌之间关系越弱;越小,说明吸烟与患肺癌之间关系越弱;|ad-bc|越大,说明吸烟与患肺癌之间关系越强。越大,说明吸烟与患肺癌之间关系越强。不患肺癌不患肺癌患肺癌患肺癌总计总计不吸烟不吸烟aba+b吸烟吸烟cdc+d总计总计a+cb+da+b+c+dadbc即aa+ba+caa+ba+cnnnnnna+ba+bP(A),P(A),n na+ca+cP(B),P(B),n n.a aP(AB)P(AB)n n其中为样本容量,即n=a+b+c+dn=a+b+c+d在表中,在表
7、中,a恰好为事件恰好为事件AB发生的频数;发生的频数;a+b和和a+c恰好分别为事恰好分别为事件件A和和B发生的频数。由于频率接近于概率,所以在发生的频数。由于频率接近于概率,所以在H0成立的条成立的条件下应该有件下应该有(a+b+c+d)a(a+b)(a+c),为了使不同样本容量的数据有统一的评判标准,基于上述分为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量析,我们构造一个随机变量-卡方统计量卡方统计量22(),()()()()其中为样本容量。n adbcKab cdac bdnabcd(1)若若 H0成立,即成立,即“吸烟与患肺癌没有关系吸烟与患肺癌没有关系”
8、,则,则K2应很小。应很小。根据表根据表3-7中的数据,利用公式(中的数据,利用公式(1)计算得到)计算得到K2的观测值为:的观测值为:那么这个值到底能告诉我们什么呢?那么这个值到底能告诉我们什么呢?242 209956.6327817 2148 9874 91k9965(7775 49)(2)独立性检验独立性检验在实际应用中,要在获取样本数据之前通过下表确定临界值:在实际应用中,要在获取样本数据之前通过下表确定临界值:0.500.400.250.150.100.455 0.7081.3232.0722.7060.050.0250.0100.0050.0013.841 5.0246.6367.
9、87910.8280)k2P(K0k0k0)k2P(K在在H0成立的情况下,统计学家估算出如下的概率成立的情况下,统计学家估算出如下的概率 即在即在H0成立的情况下,成立的情况下,K2的值大于的值大于6.635的概率非常小,近似的概率非常小,近似于于0.01。2(6.635)0.01.P K (2)也就是说,在也就是说,在H0成立的情况下,对随机变量成立的情况下,对随机变量K2进行多次观进行多次观测,观测值超过测,观测值超过6.635的频率约为的频率约为0.01。思考 206.635?KH如果,就断定不成立,这种判断出错的可能性有多大答:判断出错的概率为0.01。2009965 7775 49
10、42 209956 6327817 2148 9874 91().kHH 现在观测值太大了,现在观测值太大了,在成立的情况下能够出现这样的观测值的概率不超过0.01,在成立的情况下能够出现这样的观测值的概率不超过0.01,因此我们有99%的把握认为不成立,即有99%的把握认为“吸烟因此我们有99%的把握认为不成立,即有99%的把握认为“吸烟与患肺癌有关系”。与患肺癌有关系”。判断判断 是否成立的规则是否成立的规则0H如果如果 ,就判断,就判断 不成立,即认为吸烟与不成立,即认为吸烟与患肺癌有关系;否则,就判断患肺癌有关系;否则,就判断 成立,即认为吸烟成立,即认为吸烟与患肺癌有关系。与患肺癌有
展开阅读全文