新人教版八年级上册数学课件(第15章-分式).ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《新人教版八年级上册数学课件(第15章-分式).ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 教版八 年级 上册 数学 课件 15 分式 下载 _八年级上册_人教版(2024)_数学_初中
- 资源描述:
-
1、经典 专业 用心精品课件本课件来源于网络只供免费交流使用15.1.2 分式的基本性质第十五章 分 式学习目标1.理解并掌握分式的基本性质(重点)理解并掌握分式的基本性质(重点)2.会运用分式的基本性质进行分式的约分和通会运用分式的基本性质进行分式的约分和通分(难点)分(难点)?10452相等吗相等吗与与 导入新课导入新课情境引入分数的 基本性质2.这些分数相等的依据是什么?1.把3个苹果平均分给6个同学,每个同学得到几个苹果?36解:讲授新课讲授新课分式的基本性质一思考:下列两式成立吗?为什么?)0(cc4c343 )0(c65c6c5 分数的基本性质:即对于任意一个分数 有:ba)(cbca
2、bacbcaba )0(a,m,nmnnmn21a2a2均均不不为为”相相等等吗吗?”与与“”;分分式式”与与“你你认认为为分分式式“想一想:类比分数的基本性质,你能猜想分式有什么性质吗?思考:u分式的基本性质:u 分式的分子与分母乘以(或除以)同一个不等于0的整式,分式的值不变.上述性质可以用式表示为:0AACAACCBBCBBC(),.,.其中A,B,C是整式.知识要点32233106xxxyxyxxyyx()(),();()2x2 xa22abb 2221220.abbaba baa b ()()(),()例1填空:看分母如何变化,想分子如何变化.看分子如何变化,想分母如何变化.典例精析
3、想一想:(1)中为什么不给出x 0,而(2)中却给出了b 0?想一想:运用分式的基本性质应注意什么?(1)“(1)“都都”(2)“(2)“同一个同一个”(3)“(3)“不为不为0”0”例2不改变分式的值,把下列各式的分子与分母的各项系数都化为整数.(0.015)100500(0.30.04)100304xxxx解:5(0.6)301850322112(0.7)305abababab 不改变分式的值,使下列分子与分母都不含“”号 37ab103mn解:(1)原式=(2)原式=(3)原式=25xy37ab103mn练一练25xy想一想:联想分数的约分,由例1你能想出如何对分式进行约分?分式的约分二
4、yxxxyx22222xxxxxyxxxxxyx22)(21)2(2xxxxxx()与分数约分类似,关键是要找出分式的分子与分母的最简公分母.像这样,根据分式的基本性质,把一个分式像这样,根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分的分子与分母的公因式约去,叫做分式的约分知识要点约分的定义 分式的约分,一般要约去分子和分母所有的公因式,使所得的结果成为最简分式或整式.经过约分后的分式 ,其分子与分母没有公因像这样分子与分母没有公因式的式子,叫做最简分式 2xyx 在化简分式在化简分式 时,小颖和小明的做法出现时,小颖和小明的做法出现了分歧:了分歧:小颖:小颖:小明:小
5、明:2520 xyx y22552020 xyxx yx255120454xyxyx yxxyx你对他们俩的解法有何看法?说说看!一般约分要彻底,使分子、分母没有公因式.议一议23225115a bcab c();例3 约分:典例精析分析:为约分要先找出分子和分母的公因式.找公因式方法:(1)约去系数的最大公约数.(2)约去分子分母相同因式的最低次幂.解:2322225555153315a bcabcacacabcbbab c();(公因式是5ac2)229269xxx()解:222933323693xxxxxxxx()()()).分析:约分时,分子或分母若是多项式,能分解则必须先进行因式分解
6、.再找出分子和分母的公因式进行约分.知识要点约分的基本步骤()若分子()若分子分母都是单项式,则约去系数的最分母都是单项式,则约去系数的最大公约数,并约去相同字母的最低次幂;大公约数,并约去相同字母的最低次幂;()若分子()若分子分母含有多项式,则先将多项式分分母含有多项式,则先将多项式分解因式,然后约去分子解因式,然后约去分子分母所有的公因式分母所有的公因式注意事项:(1)约分前后分式的值要相等.(2)约分的关键是确定分式的分子和分母的公因式.(3)约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式.分式的通分三问题1:通分:71128与最小公倍数:24127解:2
7、41421227813831243分数的通分:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分.通分的关键是确定几个分母的最小公倍数想一想:联想分数的通分,由例1你能想出如何对分式进行通分?2()ababa b+=222-()abaa b =(b0)2aab+22abb-问题2:填空知识要点分式的通分的定义与分数的通分类似,根据分式的基本性质,使分子、分母同乘适当的整式(即最简公分母),把分母不相同的分式变成分母相同的分式,这种变形叫分式的通分.如分式 与 分母分别是ab,a2,通分后分母都变成了a2b.abab+22-a ba最简公分母为通分先要确定各分式的公分母,一般取
8、各分母的所有因式的最高次幂的积作公分母,叫做最简公分母.注意:确定最简公母是通分的关键.223(1)2aba bab c与2a2bc2例4 通分:222 2333,222bcbca ba b bca b c=2222 2()222.22ababaaabab cab caa b c-=解:(1)最简公分母是2a2b2c(2)最简公分母是(x+5)(x-5)2222(5)25,5(5)(5)25xx xxxxxxx+=-+-2233(5)35.5(5)(5)25xx xxxxxxx-=+-5352)2(xxxx与与不同的因式最简公分母1(x-5)(x-5)1(x+5)1(x+5)xyxbyxa22
9、2与例5 通分:方法归纳:先将分母因式分解,再将每一个因式看成一个整体,最后确定最简公分母(x+y)(x-y)解:最简公分母是x(x+y)(x-y)x(x+y)2232,()()()()aaaxaxxy xyx xy xyxyxxy=-+-+-232(),()()()bbb xybx byx xyx xy xyxxyxxy-=+-+-确定几个分式的最简公分母的方法:(1)因式分解(2)系数:各分式分母系数的最小公倍数;(3)字母:各分母的所有字母的最高次幂(4)多项式:各分母所有多项式因式的最高次幂(5)积方法归纳想一想:分数和分式在约分和通分的做法上有什么共同点?这些做法的根据是什么?约分约
10、分通分通分分数分式依据找分子与分母的最大公约数找分子与分母的公因式找所有分母的最小公倍数找所有分母的最简公分母分数或分式的基本性质当堂练习当堂练习2.下列各式中是最简分式的(下列各式中是最简分式的()222224A.B.C.D.2abxyxxybaxyxxyB1.下列各式成立的是(下列各式成立的是()A.ccbaab B.ccabab C.ccbaabD.ccbaab D3.若把分式若把分式A扩大两倍 B不变 C缩小两倍 D缩小四倍yxy 的 x 和y 都扩大两倍,则分式的值()B4.若把分式 中的 和 都扩大3倍,那么分式 的值().xyxyxyA扩大3倍 B扩大9倍C扩大4倍 D不变解:2
11、21bcbaca();22xyyxyxyxy()();2222222123421bcxyyxxymmacxyxxyym()();();();()5.约分 222232xxyx xyxxyxxyyxy()();()22141111mmm mmmmmm()()()().32131,34aba b()6.通分:通分:解:最简公分母是12a2b332314312aaba b=222339412ba ba b=解:最简公分母是(2x+1)(2x-1)244(21)841-2(2-1)(21)41xxxxxx+-+-+=4(2)1 2x,1422xx2241xx-小贴士:在分式的约分与通分中,通常碰到如下
12、因式符号变形:(b-a)2=(a-b)2;b-a=-(a-b).2222(3)()xyxxyxy,解:最简公分母是(x+y)2(x-y)2222222()22()()()()()xyxy xyx yxyxyxyxyxyxy-=+-+-222222()()()()()xx xyxyxyxyxyxyxy+=-+-+-经典 专业 用心精品课件本课件来源于网络只供免费交流使用15.2.1 分式的乘除第十五章 分 式第第2课时课时 分式的乘方分式的乘方学习目标1.了解分式的乘方的意义及其运算法则并根据分式了解分式的乘方的意义及其运算法则并根据分式乘方的运算法则正确熟练地进行分式的乘方运算乘方的运算法则正
13、确熟练地进行分式的乘方运算.(重点)重点)2.能应用分式的乘除法法则进行混合运算(难点能应用分式的乘除法法则进行混合运算(难点)导入新课导入新课复习引入1.如何进行分式的乘除法运算?如何进行分式的乘除法运算?分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.2.如何进行有理数的乘除混合运算?如何进行有理数的乘除混合运算?3.乘方的意义?乘方的意义?an=(n为正整数为正整数),aa a an个个a讲授新课讲授新课分式的乘除混合运算一例1 解析:先将除法变为乘法,再根据分式的乘法运算法则进行运算(a2)(a1)a2a2.典例精析知
14、识要点分式乘除混合运算的一般步骤(1)先把除法统一成乘法运算;)先把除法统一成乘法运算;(2)分子、分母中能分解因式的多项式分解因式;)分子、分母中能分解因式的多项式分解因式;(3)确定分式的符号,然后约分;)确定分式的符号,然后约分;(4)结果应是最简分式)结果应是最简分式.223.5325953xxxxx解:原式=2(53)(53)53353xxxxxx22.3x做一做计算:马小虎学习了分式的混合运算后,做了一道下面的家庭作业,李老师想请你帮他批改一下.请问下面的运算过程对吗?然后请你给他提出恰当的建议!222(3)4 43xxx xx 议一议 这是一道关于分式乘除的题目,运算时应注意:显
15、然此题在运算顺序上出现了错误,除没有转化为乘之前是不能运用结合律的,这一点大家要牢记呦!按照运算法则运算;乘除运算属于同级运算,应按照先出现的先算的原则,不能交换运算顺序;当除写成乘的形式时,灵活的应用乘法交换律和结合律可起到简化运算的作用;结果必须写成整式或最简分式的形式。正确的解法:222(3)4 43xxx xx除法转化为乘法之除法转化为乘法之后可以运用乘法的后可以运用乘法的交换律和结合律交换律和结合律分式的乘方二根据乘方的意义计算下列各式:43 3 3 3 381 223224339423222216333381类比分数的乘方运算,你能计算下列各式吗?2abaabb22ab3abaaa
16、bbb33ab10aba aab bb 1010ab10个想一想:一般地,当n是正整数时,()naba aab bb n个a aab bb n个n个nnab().nab这就是说,分式乘方要把分子、分母分别乘方.要点归纳分式的乘方法则(.)nnnaabbu理解要点:nnnbabannaabb想一想:到目前为止,正整数指数幂的运算法则都有什么?(1)aman am+n;(2)amanam-n;(3)(am)namn;(4)(ab)nanbn;5.nnnaabb例2 下列运算结果不正确的是()2222(1)nnnnnnxxyx 易错提醒:分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的
17、奇次方为负.D例3 计算:解析:先算乘方,然后约分化简,注意符号;典例精析方法总结:含有乘方的分式乘除混合运算,先算分式的乘方,再算乘除.解析:先算乘方,再将除法转换为乘法,把分子、分母分解因式,再进行约分化简解:方法总结:进行分式的乘除、乘方混合运算时,要严格按照运算顺序进行运算先算乘方,再算乘除注意结果一定要化成一个整式或最简分式的形式做一做计算:222(1)();3a bc232332(2)()().2a baccdda解:222422222(2)4(1)();3(3)9a ba ba bccc232332(2)()()2a baccdda633239224a bdcc daa336.8
18、a bcd 式与数有相同的混合运算顺序:先乘方,再乘除.分式的化简求值三例4 解析:按分式混合运算的顺序化简,再代入数值计算即可 通常购买同一品种的西瓜时,西瓜的质量越大,花费的钱越多,因此人们希望西瓜瓤占整个西瓜的比例越大越好假如我们把西瓜都看成球形,并把西瓜瓤的密度看成是均匀的,西瓜的皮厚都是d,已知球的体积公式为V4/3R3(其中R为球的半径),求:(1)西瓜瓤与整个西瓜的体积各是多少?(2)西瓜瓤与整个西瓜的体积比是多少?知识应用例5 解此关键:能够根据球的体积,得到两个物体的体积比即为它们的半径的立方比当堂练习当堂练习1.计算:计算:的结果为(的结果为().A.b B.a C.1 D
19、.22abab()()B1b2.23ca 3.计算:计算:322213xx y y()();-62332644833838xxyyyxyxyx 223222yx yxzyx ().().-3442322342324223xyx yyxzxyzyxx yzyx 解:原式原式4.计算:计算:222296344.1644xxxxxxxx2222223234442232444322326.2428xxxxxxxxxxxxxxxxxxxxxxxx解:原式5.先化简 ,你喜欢的数作为a的值代入计算.22222412()21aaaaaaaa221(2)(2)(2)(1)(1)(1)221aaaa aa aa
20、aaaa解:原式当a=0时,原式=-2.然后选取一个思考:a可以取任何实数吗?a不可以取1,2.课堂小结课堂小结分式乘除混合运算乘 方 运 算注意(1)乘除运算属于同级运算,应按照乘除运算属于同级运算,应按照先出现的先算的原则,不能交换运先出现的先算的原则,不能交换运算顺序;算顺序;乘方法则(2)当除写成乘的形式时,灵活的应当除写成乘的形式时,灵活的应用乘法交换律和结合律可起到简化用乘法交换律和结合律可起到简化运算的作用运算的作用混 合 运 算乘除法运算及乘方法则先算乘方,再做乘除经典 专业 用心精品课件本课件来源于网络只供免费交流使用15.2.2 分式的加减第十五章 分 式 第第1课时课时
21、分式的加减分式的加减学习目标1.掌握分式的加减运算法则并运用其进行计算掌握分式的加减运算法则并运用其进行计算.(重点(重点)2.能够进行异分母的分式加减法运算(难点)能够进行异分母的分式加减法运算(难点)导入新课导入新课情境引入情境引入32v123vv213vv123vv上坡时间:下坡时间:1()hv2()3hv帮帮小明算算时间帮帮小明算算时间讲授新课讲授新课同分母分式的加减一类比探究观察下列分数加减运算的式子,你想到了什么?121235555121215555 12?aa12a12?22xx122x2?11axx21ax知识要点同分母分式的加减法则同分母分式相加减,分母不变,把分子相加减上述
22、法则可用式子表示为.ababccc xcxyxm)1(ycyaym)2(cabdbcanabcm222)3(yxbyxa)4(xcym ycam abcdnm2 yxba 牛刀小试2222532(1)xyxxyxy;解:原式=22(53)2xyxxy=注意:结果要化为最简分式!=2233xyxy3()()()xyxy xy3xy;例1 计算:典例精析22222253358(2).a ba ba bababab解:原式=2222)8()53()35(abbababa=222285335abbababa=22abba 注意:结果要化为最简分式!=ba把分子看作一个整体,先用括号括起来!2222xx
23、xx?242)1(2 xxx?131112)2(xxxxxx242xx 2131xxxx注意:当分子是多项式时要加括号!注意:结果要化为最简形式!2131xxxx 1xx做一做异分母分式的加减二问题:请计算 (),().31213121312162365656162633121626362361异分母分数相加减分数的通分依据:分数的基本性质转化同分母分数相加减异分母分数相加减,先通分,变为同分母的分数,再加减.请计算 (),();3121312131216236562633121依据:分数基本性质分数的通分同分母分数相加减异分母分数相加减转化转化异分母分数相加减,先通分,变为同分母的分数,再加
24、减.626362361db11bdbbddbdbd db11bdbbddbdbd 异分母分式相加减分式的通分依据:分式基本性质转化转化同分母分式相加减异分母分式相加减,先通分,变为同分母的分式,再加减.请思考 6561b d b d bdbd bdbd 知识要点异分母分式的加减法则异分母分式相加减,先通分,变同分母的分式,再加减.上述法则可用式子表示为.acadbcadbcbdbdbdbd2111xxx(1);解:原式=2111xxx=注意:(1-x)=-(x-1)2(1)1xx31xx;例2 计算:分母不同,先化为同分母.112323pqpq(2);解:原式=2323(23)(23)(23)
25、(23)pqpqpqpqpqpq(23)(23)(23)(23)pqpqpqpq4(23)(23)ppqpq22449ppq;先找出最简公分母,再正确通分,转化为同分母的分式相加减.2221244xxxxxx(3);解:原式=221(2)(2)xxx xx=注意:分母是多项式先分解因式22(2)(2)(1)(2)(2)xxx xx xx x2224(2)xxxx x 先找出最简公分母,再正确通分,转化为同分母的分式相加减.=24(2)xx x;知识要点分式的加减法的思路 通分 转化为异分母相加减同分母相加减 分子(整式)相加减分母不变 转化为例3.计算:211aaa法一:原式=2(1)(1)1
展开阅读全文