《二次函数的图象和性质》课件1-优质公开课-青岛9下.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《二次函数的图象和性质》课件1-优质公开课-青岛9下.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次函数的图象和性质 二次 函数 图象 性质 课件 优质 公开 青岛
- 资源描述:
-
1、 5.4 二次函数的图象和性质二次函数的图象和性质知识回顾,问题引入知识回顾,问题引入1.什么是二次函数?什么是二次函数?一般地,若两个变量一般地,若两个变量x,y之间的对应关之间的对应关系可以表示成系可以表示成y=ax2+bx+c(a,b,c是常数,是常数,a0)的形式,则称)的形式,则称y是是x的二次函数的二次函数.2.在二次函数在二次函数y=x2中,中,y随随x的变化而变化的变化而变化的规律是什么?你想直观地了解它的性质的规律是什么?你想直观地了解它的性质吗?吗?-24-11010124合作学习,探究一合作学习,探究一画二次函数画二次函数y=x2的图象的图象(1)观察)观察y=x2的表达
2、式,选择适当的的表达式,选择适当的x值,并计算相应的值,并计算相应的y值,完成下表:值,完成下表:xy(2)在直角坐标系中描点在直角坐标系中描点(3)用光滑的曲线连接各点,便得到函)用光滑的曲线连接各点,便得到函数数y=x2的图象的图象y=x2(1)这个函数的图象形状是怎样的?)这个函数的图象形状是怎样的?(2)图象与)图象与x轴的交点坐标是什么?轴的交点坐标是什么?(3)y随随x的变化而怎样变化?的变化而怎样变化?(1)图象是一条抛物线;)图象是一条抛物线;(2)有交点,坐标为()有交点,坐标为(0,0););(3)当)当x0时,时,y随随x的增大而减小,的增大而减小,当当x0时,时,y随随
3、x的增大而增大;的增大而增大;(4)当)当x=0时,时,y的值最大,的值最大,y最大值最大值=0;(5)是轴对称图形,对称轴是)是轴对称图形,对称轴是y轴轴 (直线(直线x=0),如(),如(1,1)和()和(-1,1)等)等.(4)x取何值时,取何值时,y的值最小?是多少?的值最小?是多少?(5)图象是轴对称图形吗?如果是,它的)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点对称轴是什么?请你找出几对对称点.二次函数二次函数y=x2的图象是的图象是一条一条抛物线抛物线,开口方向:开口方向:向上向上 对称轴:对称轴:y轴轴 顶点顶点:对称轴与抛物:对称轴与抛物线的交点,它是图
4、象的线的交点,它是图象的最低点最低点.坐标为坐标为(0,0)二次函数二次函数y=-=-x2 的图象也是一条抛的图象也是一条抛物线,物线,它与二次函数它与二次函数y=x2的图象关于的图象关于x轴对称轴对称 二次函数二次函数y=-=-x2的图象是什么形状?的图象是什么形状?它与二次函数它与二次函数y=x2的图象有什么关系?的图象有什么关系?图象图象开口方向开口方向 对称轴对称轴 顶点坐标顶点坐标y=x2y=-x2 向上向上 向下向下y轴轴(0,0)抛抛物物线线增减性:增减性:y=x2:x 0时,时,y随随x的增大而减小的增大而减小 x0时时,y随随x的增大而增大的增大而增大 y=-x2:x 0时,
5、时,y随随x的增大而增大的增大而增大 x0时,时,y随随x的增大而减小的增大而减小最值:最值:y=x2:x=0时,时,y最小值最小值=0 y=-x2:x=0时,时,y最大值最大值=0 在图在图2-4中画出二次函数中画出二次函数y=3x2的图象,并思考下列问题:的图象,并思考下列问题:(1)图象:)图象:_开口方向:开口方向:_对称轴:对称轴:_顶点坐标:顶点坐标:_(2)它与)它与y=x2的图象的的图象的相同点:相同点:_;不同点:不同点:_.抛物线抛物线向上向上y轴轴(0,0)形状、开口方向、对称轴、顶点坐标形状、开口方向、对称轴、顶点坐标开口大小开口大小相同:相同:形状形状开口方向开口方向
6、对称轴对称轴顶点坐标顶点坐标不同:不同:开口大小开口大小a越越大,开口大,开口越小越小 在图在图2-4中画出中画出y=x2的图象,它与的图象,它与y=x2,y=3x2的图象有什么相同和不同?的图象有什么相同和不同?13想一想想一想函数函数y=ax2(a0)的图象性质)的图象性质图象:图象:开口方向:开口方向:_,对称轴:对称轴:_顶点坐标:顶点坐标:_.向上向上y轴轴(0,0)增减性:增减性:x0时,时,y随随x的增大而减小的增大而减小 x0时,时,y随随x的增大而增大的增大而增大最值:最值:当当x=0时,时,y取得最小值取得最小值 y最小值最小值=0函数函数y=ax2(a0)的图象性质)的图
7、象性质图象:图象:开口方向:开口方向:_,对称轴:对称轴:_顶点坐标:顶点坐标:_.向下向下y轴轴(0,0)增减性:增减性:x0时,时,y随随x的增大而增大的增大而增大 x0时,时,y随随x的增大而减小的增大而减小最值:最值:当当x=0时,时,y取得最大值取得最大值 y最大值最大值=01.二次函数二次函数y=-=-x2中,当中,当y=-=-16时,时,x=_.2.已知函数已知函数y=ax2的图象过点(的图象过点(3,9),和),和(2,t)(1)求)求a和和t的值;的值;(2)试判断这个函数的图象是否)试判断这个函数的图象是否 过点(过点(-3,9).过点(过点(-3,9)a=1,t=44能力
8、小测试:能力小测试:画出二次函数画出二次函数y=2x2+1的图象的图象y=2x2+1y=2x2合作学习,探究二合作学习,探究二y=2x2+1的图象:的图象:由由y=2x2的图象向上平的图象向上平移移1个单位得到个单位得到开口方向:向上开口方向:向上对称轴:对称轴:y轴轴顶点坐标:(顶点坐标:(0,1)二次函数二次函数y=2x2+1的图象的开口方向、的图象的开口方向、对称轴、顶点坐标分别是什么?它与二次函对称轴、顶点坐标分别是什么?它与二次函数数y=2x2的图象有什么关系?的图象有什么关系?y=2x2y=2x2+1y=2x2-1的图象:的图象:由由y=2x2的图象向下平移的图象向下平移1个单位得
9、到个单位得到开口方向:向上开口方向:向上对称轴:对称轴:y轴轴顶点坐标:(顶点坐标:(0,-,-1)二次函数二次函数y=2x2-1的图象的开口方向、的图象的开口方向、对称轴、顶点坐标分别是什么?它与二次函对称轴、顶点坐标分别是什么?它与二次函数数y=2x2的图象有什么关系?的图象有什么关系?y=2x2y=2x2-1函数函数y=ax2+c(a0)的图象性质)的图象性质平移:平移:由由y=ax2向上或向下向上或向下平移平移c个单位得到个单位得到开口方向:开口方向:对称轴:对称轴:顶点坐标:顶点坐标:向上向上y轴轴(0,c)增减性:增减性:x0时,时,y随随x的增大而减小的增大而减小 x0时,时,y
10、随随x的增大而增大的增大而增大最值:最值:当当x=0时,时,y取得最小值取得最小值 y最小值最小值=c函数函数y=ax2+c(a0)的性质)的性质平移:平移:由由y=ax2向上或向下向上或向下平移平移c个单位得到个单位得到开口方向:开口方向:对称轴:对称轴:顶点坐标:顶点坐标:向下向下y轴轴(0,c)增减性:增减性:x0时,时,y随随x的增大而增大的增大而增大 x0时,时,y随随x的增大而减小的增大而减小最值:最值:当当x=0时,时,y取得最大值取得最大值 y最大值最大值=c1.二次函数二次函数y=3x2-的图象与二次函数的图象与二次函数 y=3x2的图象有什么关系?它是轴对的图象有什么关系?
11、它是轴对 称图形吗?它的开口方向、对称轴、称图形吗?它的开口方向、对称轴、顶点坐标分别是什么?画图看一看顶点坐标分别是什么?画图看一看.2.二次函数二次函数y=-=-2x2-的图象与二次函的图象与二次函 数数y=-=-2x2+的图象有什么关系的图象有什么关系?121212随堂练习随堂练习y=3x2 y=3x2-1.y=3x2-的图象:的图象:由由y=3x2的图象向下平移的图象向下平移 个单位得到个单位得到开口方向:向上开口方向:向上对称轴:对称轴:y轴轴顶点坐标:(顶点坐标:(0,-)121212122.y=-=-2x2-的图象:的图象:由由y=-=-2x2+的图象向下平移的图象向下平移1个个
展开阅读全文