(专题精选)初中数学圆的分类汇编及答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(专题精选)初中数学圆的分类汇编及答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 精选 初中 数学 分类 汇编 答案 下载 _其它资料_数学_初中
- 资源描述:
-
1、(专题精选)初中数学圆的分类汇编及答案一、选择题1中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆下列说法中错误的是( )A勒洛三角形是轴对称图形B图1中,点A到上任意一点的距离都相等C图2中,勒洛三角形上任意一点到等边三角形DEF的中心的距离都相等D图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义
2、,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A到上任意一点的距离都是DE,故正确;勒洛三角形上任意一点到等边三角形DEF的中心的距离都不相等,到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3 ,圆的周长= ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解2如图,在平行四边形ABCD中,BDAD,以BD为直径作圆
3、,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A12BCD【答案】C【解析】【分析】易得AD长,利用相应的三角函数可求得ABD的度数,进而求得EOD的度数,那么一个阴影部分的面积=SABD-S扇形DOE-SBOE,算出后乘2即可【详解】连接OE,OFBD=12,AD:AB=1:2,AD=4 ,AB=8,ABD=30,SABD=412=24,S扇形= 两个阴影的面积相等,阴影面积= .故选:C【点睛】本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积3如图,在矩形中,以为圆心,长为半径画弧交于点,以为圆心,长为半径画弧交的延长线于点,则图中阴影部
4、分的面积是( )ABCD【答案】C【解析】【分析】先分别求出扇形FCD和扇形EAD的面积以及矩形ABCD的面积,再根据阴影面积扇形FCD的面积(矩形ABCD的面积扇形EAD的面积)即可得解【详解】解:S扇形FCD,S扇形EAD,S矩形ABCD,S阴影S扇形FCD(S矩形ABCDS扇形EAD)9(244)924+41324故选:C【点睛】本题考查扇形面积的计算,根据阴影面积扇形FCD的面积(矩形ABCD的面积扇形EAD的面积)是解答本题的关键4已知下列命题:若ab,则acbc;若a=1,则=a;内错角相等;90的圆周角所对的弦是直径其中原命题与逆命题均为真命题的个数是()A1个B2个C3个D4个
5、【答案】A【解析】【分析】先对原命题进行判断,再判断出逆命题的真假即可【详解】解:若ab,则acbc是假命题,逆命题是假命题;若a=1,则=a是真命题,逆命题是假命题;内错角相等是假命题,逆命题是假命题;90的圆周角所对的弦是直径是真命题,逆命题是真命题;其中原命题与逆命题均为真命题的个数是1个;故选A点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理5如图,小明随意向水平放置的大正方形内部区域
6、抛一个小豆子,则小豆子落在小正方形内部及边界(阴影)区域的概率为( )ABCD【答案】C【解析】【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率【详解】解:设小正方形的边长为1,则其面积为1圆的直径正好是大正方形边长,根据勾股定理,其小正方形对角线为,即圆的直径为,大正方形的边长为,则大正方形的面积为,则小球停在小正方形内部(阴影)区域的概率为故选:【点睛】概率相应的面积与总面积之比,本题实质是确定圆的内接正方形和外切正方形的边长比设较小吧边长为单位1是在选择填空题中求比的常见方法.6如图,在O,点A、B、C在O上,若OAB54,则C()A54B27C36D46【答案】C【解
7、析】【分析】先利用等腰三角形的性质和三角形内角和计算出AOB的度数,然后利用圆周角解答即可.【详解】解:OAOB,OBAOAB54,AOB180545472,ACBAOB36故答案为C【点睛】本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7已知锐角AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN根据以上作图过程及所作图形,下列结论中错误的是( )ACOM=CODB若OM=MN,则AOB=20CMNCDDMN=3CD【答案】D【解析】【
8、分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得【详解】解:由作图知CM=CD=DN,COM=COD,故A选项正确;OM=ON=MN,OMN是等边三角形,MON=60,CM=CD=DN,MOA=AOB=BON=MON=20,故B选项正确;MOA=AOB=BON=20,OCD=OCM=80,MCD=160,又CMN=AON=20,MCD+CMN=180,MNCD,故C选项正确;MC+CD+DNMN,且CM=CD=DN,3CDMN,故D选项错误;故选:D【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点8如图,弧 AB 等于弧CD ,于点,于
9、点,下列结论中错误的是( )AOE=OFBAB=CDCAOB=CODDOEOF【答案】D【解析】【分析】根据圆心角、弧、弦的关系可得B、C正确,根据垂径定理和勾股定理可得A正确,D错误【详解】解:,ABCD,AOBCOD,BEAB,DFCD,BEDF,又OBOD,由勾股定理可知OEOF,即A、B、C正确,D错误,故选:D【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键9如图,已知AB是O的直径,CD是弦,且CDAB,BC=3,AC=4,则sinABD的值是()ABCD【答案】D【解析】【分析】由垂径定理和圆周角定理可证ABD=ABC,再根据勾股定理求
展开阅读全文