书签 分享 收藏 举报 版权申诉 / 17
上传文档赚钱

类型(专题精选)初中数学圆的难题汇编及答案.doc

  • 上传人(卖家):刘殿科
  • 文档编号:5773743
  • 上传时间:2023-05-07
  • 格式:DOC
  • 页数:17
  • 大小:915.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《(专题精选)初中数学圆的难题汇编及答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 精选 初中 数学 难题 汇编 答案 下载 _其它资料_数学_初中
    资源描述:

    1、(专题精选)初中数学圆的难题汇编及答案一、选择题1如图,在矩形中,对角线,内切于,则图中阴影部分的面积是( )ABCD【答案】D【解析】【分析】先根据勾股定理求出BC,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,利用面积法求出r=2,再利用三角形ABC的面积减去圆O的面积得到阴影的面积【详解】四边形ABCD是矩形,B=90,BC=8,连接OA、OB、OC、过点O作OHAB,OEBC,OFAC,设的半径为r,内切于,OH=OE=OF=r,解得r=2,的半径为2,故选:D【点睛】此题考查矩形的性质,勾股定理,三角形内切圆的定义,阴影面积的求法,添加合适的辅助线是解题的

    2、关键2如图,O中,弦BC与半径OA相交于点D,连接AB,OC,若A=60,ADC=85,则C的度数是()A25B27.5C30D35【答案】D【解析】分析:直接利用三角形外角的性质以及邻补角的关系得出B以及ODC度数,再利用圆周角定理以及三角形内角和定理得出答案详解:A=60,ADC=85,B=85-60=25,CDO=95,AOC=2B=50,C=180-95-50=35故选D点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出AOC度数是解题关键3将直尺、有60角的直角三角板和光盘如图摆放,A为60角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A4

    3、B8C6D【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,OAB=60,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分BAC,OAB=60,在RtABO中,OB=ABtanOAB=4,光盘的直径为8故选:B【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.4如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则图中阴影部分的面积是( )ABCD【答案】A【解析】【分析】如图,连接CE图中S阴影S扇形BCES扇形

    4、BODSOCE根据已知条件易求得OBOCOD4,BCCE8,ECB60,OE4,所以由扇形面积公式、三角形面积公式进行解答即可【详解】解:如图,连接CEACBC,ACBC8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,ACB90,OBOCOD4,BCCE8又OEAC,ACBCOE90在RtOEC中,OC4,CE8,CEO30,ECB60,OE4,S阴影S扇形BCES扇形BODSOCE=故选:A【点睛】本题考查了扇形面积的计算不规则图形的面积一定要注意分割成规则图形的面积进行计算5如图,是的直径,是上一点(、除外),则的度数是( )ABCD【答案】D【解析】【分析】根据平角

    5、得出的度数,进而利用圆周角定理得出的度数即可【详解】解:,故选:【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键6如图,AB是O的直径,点C是O上一点,点D在BA的延长线上,CD与O交于另一点E,DE=OB=2,D=20,则弧BC的长度为()ABCD【答案】A【解析】【分析】连接OE、OC,如图,根据等腰三角形的性质得到D=EOD=20,根据外角的性质得到CEO=D+EOD=40,根据等腰三角形的性质得到C=CEO=40,根据外角的性质得到BOC=C+D=60,根据求弧长的公式得到结论.【详解】解:连接OE、O

    6、C,如图,DE=OB=OE,D=EOD=20,CEO=D+EOD=40,OE=OC,C=CEO=40,BOC=C+D=60,的长度=,故选A.【点睛】本题考查了弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R),还考查了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角形外角性质是关键7如图,有一个边长为的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( )ABCD【答案】A【解析】【分析】根据题意画出图形,再根据正多边形圆心角的求法求出AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可【详解】解:如图所示,正六边形的边长为2

    7、cm,OGBC,六边形ABCDEF是正六边形,BOC=3606=60,OB=OC,OGBC,BOG=COG=BOC =30,OGBC,OB=OC,BC=2cm,BG=BC=2=1cm,OB=2cm,OG=,圆形纸片的半径为cm,故选:A【点睛】本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键8中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间

    8、画一段圆弧三段圆弧围成的曲边三角形图2是等宽的勒洛三角形和圆下列说法中错误的是( )A勒洛三角形是轴对称图形B图1中,点A到上任意一点的距离都相等C图2中,勒洛三角形上任意一点到等边三角形DEF的中心的距离都相等D图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60,半径为DE的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A到上任意一点的距离都是D

    9、E,故正确;勒洛三角形上任意一点到等边三角形DEF的中心的距离都不相等,到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3 ,圆的周长= ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解9木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()ABCD【答案】D【解析】解:如右图,连接OP,由于OP是RtAOB斜边上的中线,所以OP=AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一

    10、段弧线故选D10如图,在菱形中,点是这个菱形内部或边上的一点,若以点,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )ABCD【答案】D【解析】【分析】分三种情形讨论若以边BC为底若以边PC为底若以边PB为底分别求出PD的最小值,即可判断【详解】解:在菱形ABCD中,ABC=60,AB=1,ABC,ACD都是等边三角形,若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短“,即当点P与点A重合时,PD值最小,最小值为1;若以边PC为底,PBC为顶角时,以点B为圆心,BC长为半径作圆,与BD相

    11、交于一点,则弧AC(除点C外)上的所有点都满足PBC是等腰三角形,当点P在BD上时,PD最小,最小值为若以边PB为底,PCB为顶角,以点C为圆心,BC为半径作圆,则弧BD上的点A与点D均满足PBC为等腰三角形,当点P与点D重合时,PD最小,显然不满足题意,故此种情况不存在; 上所述,PD的最小值为 故选D【点睛】本题考查菱形的性质、等边三角形的性质、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型11我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图),它是分别

    12、以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图是等宽的勒洛三角形和圆形滚木的截面图. 图 图有如下四个结论:勒洛三角形是中心对称图形图中,点到上任意一点的距离都相等图中,勒洛三角形的周长与圆的周长相等使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是( )ABCD【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】勒洛三角形不是中心对称图形,故错误;图中,点到上任意一点的距离都相等,故正确;图中,设圆的半径为r勒洛三角形的周长= 圆的周长为勒洛三角形的周长与圆的周长相等,故正确;使用截面是勒洛三角形的

    13、滚木来搬运东西,不会发生上下抖动,故错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键.12如图,点I是RtABC的内心,C90,AC3,BC4,将ACB平移使其顶点C与I重合,两边分别交AB于D、E,则IDE的周长为()A3B4C5D7【答案】C【解析】【分析】连接AI、BI,根据三角形的内心的性质可得CAIBAI,再根据平移的性质得到CAIAID,ADDI,同理得到BEEI,即可解答.【详解】连接AI、BI,C90,AC3,BC4,AB5点I为ABC的内心,AI平分CAB,CAIBAI,由平移得:ACDI,CAIAID,BAIAID,ADDI,同

    14、理可得:BEEI,DIE的周长DE+DI+EIDE+AD+BEAB5故选C【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线13如图,在边长为8的菱形ABCD中,DAB=60,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是 ( )ABCD【答案】C【解析】【分析】由菱形的性质得出AD=AB=8,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积,根据面积公式计算即可【详解】解:四边形ABCD是菱形,DAB=60,AD=AB=8,ADC=18060=120,DF是菱形的高,DFAB,D

    15、F=ADsin60=,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积=故选:C.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键14如图,AB是O的直径,弦CDAB于E点,若AD=CD= 则的长为()ABCD【答案】B【解析】【分析】根据垂径定理得到, ,A=30,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD,AB是O的直径,弦CDAB于E点,AD=CD= , ,A=30,DOE=60,OD=,的长=的长=,故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.15如图

    16、,若干全等正五边形排成环状图中所示的是前3个正五边形,则要完成这一圆环还需()个这样的正五边形A6B7C8D9【答案】B【解析】【分析】【详解】如图,多边形是正五边形, 内角是(5-2)180=108,O=180-(180-108)-(180-108)=36,36度圆心角所对的弧长为圆周长的,即10个正五边形能围城这一个圆环,所以要完成这一圆环还需7个正五边形.故选B.16如图在RtABC中,ACB90,AC6,BC8,O是ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A10B14C12D14【答案】B【解析】【分析】根据勾股定理求出AB,求出ABC的内切圆的半径,根据扇形面积

    17、公式、三角形的面积公式计算,得到答案【详解】解:设O与ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在RtABC中,AB10,ABC的内切圆的半径2,O是ABC的内切圆,OABCAB,OBACBA,AOB180(OAB+OBA)180(CAB+CBA)135,则图中阴影部分的面积之和,故选B【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键17如图,四边形ABCD是O的内接正方形,点P是劣弧弧AB上任意一点(与点B不重合),则BPC的度数为()A30B45C60D90【答案】B【解析】分析:接OB,OC,根据四边形ABCD

    18、是正方形可知BOC=90,再由圆周角定理即可得出结论详解:连接OB,OC,四边形ABCD是正方形,BOC=90,BPC=BOC=45故选B点睛:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键18如图,AB 是O的直径,弦CDAB于点M,若CD8 cm,MB2 cm,则直径AB的长为( )A9 cmB10 cmC11 cmD12 cm【答案】B【解析】【分析】由CDAB,可得DM=4设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案【详解】解:连接OD,设O半径OD为

    19、R,AB 是O的直径,弦CDAB于点M ,DM=CD=4cm,OM=R-2,在RTOMD中,OD=DM+OM即R=4+(R-2),解得:R=5,直径AB的长为:25=10cm故选B【点睛】本题考查了垂径定理以及勾股定理注意掌握辅助线的作法及数形结合思想的应用19如图,在O中,OCAB,ADC26,则COB的度数是()A52B64C48D42【答案】A【解析】【分析】由OCAB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出COB的度数【详解】解:OCAB,COB2ADC52故选:A【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解

    20、题的关键20如图,点为的内心,过点作交于点,交于点,若,则的长为( )A35B4C5D55【答案】B【解析】【分析】连接EB、EC,如图,利用三角形内心的性质得到1=2,利用平行线的性质得2=3,所以1=3,则BM=ME,同理可得NC=NE,接着证明AMNABC,所以,则BM=7-MN,同理可得CN=5-MN,把两式相加得到MN的方程,然后解方程即可【详解】连接EB、EC,如图,点E为ABC的内心,EB平分ABC,EC平分ACB,1=2, MNBC,2=3,1=3,BM=ME,同理可得NC=NE,MNBC,AMNABC, ,即,则BM=7-MN,同理可得CN=5-MN,+得MN=12-2MN,MN=4故选:B【点睛】此题考查三角形的内切圆与内心,相似三角形的判定与性质,解题关键在于掌握与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形三角形的内心就是三角形三个内角角平分线的交点

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:(专题精选)初中数学圆的难题汇编及答案.doc
    链接地址:https://www.163wenku.com/p-5773743.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库