(专题精选)初中数学锐角三角函数的全集汇编及解析.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(专题精选)初中数学锐角三角函数的全集汇编及解析.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 精选 初中 数学 锐角三角 函数 全集 汇编 解析 下载 _其它资料_数学_初中
- 资源描述:
-
1、(专题精选)初中数学锐角三角函数的全集汇编及解析一、选择题1在一次数学活动中,嘉淇利用一根拴有小锤的细线和一个半圆形量角器制作了一个测角仪,去测量学校内一座假山的高度.如图,嘉淇与假山的水平距离为,他的眼睛距地面的高度为,嘉淇的视线经过量角器零刻度线和假山的最高点,此时,铅垂线经过量角器的刻度线,则假山的高度为( )ABCD【答案】A【解析】【分析】根据已知得出AK=BD=6m,再利用tan30= ,进而得出CD的长【详解】解:如图,过点A作AKCD于点KBD=6米,李明的眼睛高AB=1.6米,AOE=60,DB=AK,AB=KD=1.6米,CAK=30,tan30=,解得:CK=2即CD=C
2、K+DK=2+1.6=(2+1.6)m故选:A【点睛】本题考查的是解直角三角形的应用,根据题意构造直角三角形,解答关键是应用锐角三角函数定义.2如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为( )ABC8D【答案】A【解析】【分析】根据折叠性质可得BE=AB,AB=AB=4,BAM=A=90,ABM=MBA,可得EAB=30,根据直角三角形两锐角互余可得EBA=60,进而可得ABM=30,在RtABM中,利用ABM的余弦求出BM的长即可.【详解】对折矩形纸
3、片ABCD,使AD与BC重合,AB=4,BE=AB=2,BEF=90,把纸片展平,再一次折叠纸片,使点A落在EF上的点A处,并使折痕经过点B,AB=AB=4,BAM=A=90,ABM=MBA,EAB=30,EBA=60,ABM=30,在RtABM中,AB=BMcosABM,即4=BMcos30,解得:BM=,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.3如图,在等腰直角ABC中,C90,D为BC的中点,将ABC折叠
4、,使点A与点D重合,EF为折痕,则sinBED的值是()ABCD【答案】B【解析】【分析】先根据翻折变换的性质得到,再根据等腰三角形的性质及三角形外角的性质可得到,设,则,再根据勾股定理即可求解【详解】解:DEF是AEF翻折而成,DEFAEF,AEDF,ABC是等腰直角三角形,EDF45,由三角形外角性质得CDF+45BED+45,BEDCDF,设CD1,CFx,则CACB2,DFFA2x,在RtCDF中,由勾股定理得,CF2+CD2DF2,即x2+1(2x)2,解得:,故选:B【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中4如
5、图,点从点出发沿方向运动,点从点出发沿方向运动,同时出发且速度相同,(长度不变,在上方,在左边),当点到达点时,点停止运动在整个运动过程中,图中阴影部分面积的大小变化情况是( )A一直减小B一直不变C先减小后增大D先增大后减小【答案】B【解析】【分析】连接GE,过点E作EMBC于M,过点G作GNAB于N,设AE=BG=x,然后利用锐角三角函数求出GN和EM,再根据S阴影=SGDESEGF即可求出结论【详解】解:连接GE,过点E作EMBC于M,过点G作GNAB于N设AE=BG=x,则BE=ABAE=ABxGN=BGsinB=xsinB,EM=BEsinB=(ABx)sinBS阴影=SGDESEG
6、F=DEGNGFEM=DE(xsinB)DE(ABx)sinB=DExsinB(ABx)sinB=DEABsinBDE、AB和B都为定值S阴影也为定值故选B【点睛】此题考查的是锐角三角函数和求阴影部分的面积,掌握利用锐角三角函数解直角三角形和三角形的面积公式是解决此题的关键5如图,在ABC中,ACBC,ABC30,点D是CB延长线上的一点,且BDBA,则tanDAC的值为( )A2B2C3D3【答案】A【解析】【分析】【详解】设AC=x,在RtABC中,ABC=30,即可得AB=2x,BC=x,所以BD=BA=2x,即可得CD=x+2x=(+2)x,在RtACD中,tanDAC=,故选A.6如
7、图,在矩形ABCD中,BC2,AEBD,垂足为E,BAE30,则tanDEC的值是()A1BCD【答案】C【解析】【分析】先根据题意过点C作CFBD与点F可求得AEBCFD(AAS),得到AECF1,EF,即可求出答案【详解】过点C作CFBD与点FBAE30,DBC30,BC2,CF1,BF ,易证AEBCFD(AAS)AECF1,BAEDBC30,BE AE,EFBFBE ,在RtCFE中,tanDEC,故选C【点睛】此题考查了含30的直角三角形,三角形全等的性质,解题关键是证明所进行的全等7如图,在ABC中,ACBC,ABC30,点D是CB延长线上的一点,且ABBD,则tanD的值为()A
8、BCD【答案】D【解析】【分析】设ACm,解直角三角形求出AB,BC,BD即可解决问题【详解】设ACm,在RtABC中,C90,ABC30,AB2AC2m,BCACm,BDAB2m,DC2m+m,tanADC2故选:D【点睛】本题考查解直角三角形,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8如图所示,在ABC中,C90,AB8,CD是AB边上的中线,作CD的中垂线与CD交于点E,与BC交于点F若CFx,tanAy,则x与y之间满足( )ABCD【答案】A【解析】【分析】由直角三角形斜边上的中线性质得出CDABAD4,由等腰三角形的性质得出AACD,得出tan
9、ACDtanAy,证明CEGFEC,得出,得出y,求出y2,得出FE2,再由勾股定理得出FE2CF2CE2x24,即可得出答案【详解】解:如图所示:在ABC中,C90,AB8,CD是AB边上的中线,CDABAD4,AACD,EF垂直平分CD,CECD2,CEFCEG90,tanACDtanAy,ACD+FCECFE+FCE90,ACDFCE,CEGFEC,y,y2,FE2,FE2CF2CE2x24,x24,+4x2,故选:A【点睛】本题考查了解直角三角形、直角三角形斜边上的中线性质、等腰三角形的性质、相似三角形的判定与性质等知识;熟练掌握直角三角形的性质,证明三角形相似是解题的关键9如图,在中
展开阅读全文