(完整版)大学物理振动习题含答案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)大学物理振动习题含答案.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 大学物理 振动 习题 答案
- 资源描述:
-
1、一、选择题:13001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度q ,然后由静止放手任其振动,从放手时开始计时。若用余弦函数表示其运动方程,则该单摆振动的初相为(A) p (B) p/2 (C) 0 (D) q 23002:两个质点各自作简谐振动,它们的振幅相同、周期相同。第一个质点的振动方程为x1 = Acos(wt + a)。当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。则第二个质点的振动方程为:(A) (B) (C) (D) 33007:一质量为m的物体挂在劲度系数为k的轻弹簧下面,振动角频率为w。若把此弹簧分割成二等份,将
2、物体m挂在分割后的一根弹簧上,则振动角频率是(A) 2 w (B) (C) (D) w /2 43396:一质点作简谐振动。其运动速度与时间的曲线如图所示。若质点的振动规律用余弦函数描述,则其初相应为(A) p/6 (B) 5p/6 (C) -5p/6 (D) -p/6(E) -2p/3 53552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T1和T2。将它们拿到月球上去,相应的周期分别为和。则有(A) 且 (B) 且(C) 且 (D) 且 65178:一质点沿x轴作简谐振动,振动方程为 (SI)。从t = 0时刻起,到质点位置在x = -2 cm处,且向x轴正方
3、向运动的最短时间间隔为(A) (B) (C) (D) (E) 75179:一弹簧振子,重物的质量为m,弹簧的劲度系数为k,该振子作振幅为A的简谐振动。当重物通过平衡位置且向规定的正方向运动时,开始计时。则其振动方程为:(A) (B) (C) (D) (E) 85312:一质点在x轴上作简谐振动,振辐A = 4 cm,周期T = 2 s,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm处,且向x轴负方向运动,则质点第二次通过x = -2 cm处的时刻为(A) 1 s (B) (2/3) s (C) (4/3) s (D) 2 s 95501:一物体作简谐振动,振动方程为。
4、在 t = T/4(T为周期)时刻,物体的加速度为(A) (B) (C) (D) 105502:一质点作简谐振动,振动方程为,当时间t = T/2(T为周期)时,质点的速度为xtOx1x23030图(A) (B) (C) (D) 113030:两个同周期简谐振动曲线如图所示。x1的相位比x2的相位(A) 落后p/2 (B) 超前p/2 (C) 落后p (D) 超前p 123042:一个质点作简谐振动,振幅为A,在起始时刻质点的位移为,且向x轴的正方向运动,代表此简谐振动的旋转矢量图为 xO (B) x(D)O x(A)Ox (C)O3270图133254:一质点作简谐振动,周期为T。质点由平衡
5、位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的时间为(A) T /4 (B) T /6 (C) T /8 (D) T /12 143270:一简谐振动曲线如图所示。则振动周期是(A) 2.62 s (B) 2.40 s(C) 2.20 s (D) 2.00 s 155186:已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为:(A) (B) (C) (D) (E) 竖直放置 放在光滑斜面上 163023:一弹簧振子,当把它水平放置时,它可以作简谐振动。若把它竖直放置或放在固定的光滑斜面上,试判断下面哪种情况是正确的:(A) 竖直放置
6、可作简谐振动,放在光滑斜面上不能作简谐振动(B) 竖直放置不能作简谐振动,放在光滑斜面上可作简谐振动(C) 两种情况都可作简谐振动(D) 两种情况都不能作简谐振动 173028:一弹簧振子作简谐振动,总能量为E1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E2变为(A) E1/4 (B) E1/2 (C) 2E1 (D) 4 E1 183393:当质点以频率n 作简谐振动时,它的动能的变化频率为(A) 4 n (B) 2 n (C) n (D) 19。3560:弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A) kA2 (B) (C) (1/4
7、)kA2 (D) 0 205182:一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4 (B) 1/2 (C) (D) 3/4 (E) 215504:一物体作简谐振动,振动方程为。则该物体在t = 0时刻的动能与t = T/8(T为振动周期)时刻的动能之比为:(A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1 225505:一质点作简谐振动,其振动方程为。在求质点的振动动能时,得出下面5个表达式: (1) (2) (3) (4) (5) 其中m是质点的质量,k是弹簧的劲度系数,T是振动的周期。这些表达式中(A) (1),(4)是对的 (B)
8、(2),(4)是对的 (C) (1),(5)是对的(D) (3),(5)是对的 (E) (2),(5)是对的 233008:一长度为l、劲度系数为k 的均匀轻弹簧分割成长度分别为l1和l2的两部分,且l1 = n l2,n为整数. 则相应的劲度系数k1和k2为(A) , (B) , (C) , (D) , x t O A/2 -A x1x2243562:图中所画的是两个简谐振动的振动曲线。若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) (B) (C) (D) 0 二、填空题:13009:一弹簧振子作简谐振动,振幅为A,周期为T,其运动方程用余弦函数表示。若时,(1) 振子在负的最大位移
9、处,则初相为_;(2) 振子在平衡位置向正方向运动,则初相为_;(3) 振子在位移为A/2处,且向负方向运动,则初相为_。23390:一质点作简谐振动,速度最大值vm = 5 cm/s,振幅A = 2 cm。若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_。 33557:一质点沿x轴作简谐振动,振动范围的中心点为x轴的原点。已知周期为T,振幅为A。(1)若t = 0时质点过x = 0处且朝x轴正方向运动,则振动方程为 x =_。(2)若t = 0时质点处于处且向x轴负方向运动,则振动方程为 x =_。43816:一质点沿x轴以 x = 0 为平衡位置作简谐振动,频率为 0.25 H
10、z。t = 0时,x = -0.37 cm而速度等于零,则振幅是_,振动的数值表达式为_。53817:一简谐振动的表达式为,已知 t = 0时的初位移为0.04 m,初速度为0.09 m/s,则振幅A =_ ,初相f =_。63818:两个弹簧振子的周期都是0.4 s,设开始时第一个振子从平衡位置向负方向运动,经过0.5 s 后,第二个振子才从正方向的端点开始运动,则这两振动的相位差为_。73819:两质点沿水平x轴线作相同频率和相同振幅的简谐振动,平衡位置都在坐标原点。它们总是沿相反方向经过同一个点,其位移x的绝对值为振幅的一半,则它们之间的相位差为_。83820:将质量为 0.2 kg的物
11、体,系于劲度系数k = 19 N/m的竖直悬挂的弹簧的下端。假定在弹簧不变形的位置将物体由静止释放,然后物体作简谐振动,则振动频率为_,振幅为_。 93033:一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_;w =_;f =_。 3033图3046图3041图103041:一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为_,速度为_。113046:一简谐振动的旋转矢量图如图所示,振幅矢量长2cm,则该简谐振动的初相为_。振动方程为_。3399图3398图123398:一质点作简谐振动。其振动曲线如图所示。根据此图,它的周期T =_,用余弦函数
12、描述时初相 f =_。 3567图133399:已知两简谐振动曲线如图所示,则这两个简谐振动方程(余弦形式)分别为_和_。143567:图中用旋转矢量法表示了一个简谐振动。旋转矢量的长度为0.04 m,旋转角速度w = 4p rad/s。此简谐振动以余弦函数表示的振动方程为x =_(SI)。153029:一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的_。(设平衡位置处势能为零)。当这物块在平衡位置时,弹簧的长度比原长长Dl,这一振动系统的周期为_。163268一系统作简谐振动, 周期为T,以余弦函数表达振动时,初相为零。在0t范围内,系统在t =_时刻动能和势
展开阅读全文