(完整版)多元函数微分法及其应用期末复习题高等数学下册.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《(完整版)多元函数微分法及其应用期末复习题高等数学下册.doc》由用户(刘殿科)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 完整版 多元 函数 微分 及其 应用 期末 复习题 高等数学 下册
- 资源描述:
-
1、第八章 偏导数与全微分一、选择题1.若u=u(x, y)是可微函数,且 则 A A. B. C. -1 D. 12.函数 D A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值3.二元函数在点处的两个偏导数存在是函数在该点可微的 B A. 充分而非必要条件 B.必要而非充分条件C.充分必要条件 D.既非充分也非必要条件4. 设u=+2+3+xy+3x-2y-6z在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 D A. B. C. D. 5. 函数 B A. 在点(0, 0)处取极大值 B.
2、 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值6.二元函数在点处可微是在该点连续的 A A. 充分而非必要条件 B.必要而非充分条件C.充分必要条件 D.既非充分也非必要条件7. 已知, 则= B A. B. C. D. 8. 函数 (x0,y0) D A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值9.二元函数在点处连续的是在点处可微的 A A. 必要而非充分条件 B. 充分而非必要条件C.充分必要条件 D.既非充分也非必
3、要条件10. 曲线x=t, y=, z=所有切线中与平面x+2y+z=4平行的切线有 B A. 1 条 B.2条 C. 3条 D.不存在11设,则 B A. B. C. D. 12为使二元函数沿某一特殊路径趋向的极限为2,这条路线应选择为 B A. B. C. D. 13设函数满足,且,则BA. B. C. D. 14设,则 C A. B. C. D. 15为使二元函数在全平面内连续,则它在处应被补充定义为 B A.-1 B.0 C.1 D.16已知函数,则 CA. B. C. D. 17若 ,则B A. B. C. D. 18若,则在点 D 处有A. B. C. D. 19设,则下列结论正确
4、的是 A A. B. C. D.两者大小无法确定20.函数 ,则极限 ( C).(A) 等于1 (B) 等于2 (C) 等于0 (D) 不存在21.函数在点 ( D ).(A) 有极大值 (B) 有极小值 (C) 不是驻点 (D) 无极值22.二元函数在原点处( A).(A) 连续,但偏导不存在 (B) 可微(C) 偏导存在,但不连续 (D) 偏导存在,但不可微23设,而,具有二阶连续导数,则( B).(A) (B) (C) (D) 24函数在点处连续是它在该点偏导存在的( D).(A) 必要而非充分条件 (B) 充分而非必要条件(C) 充分必要条件 (D) 既非充分又非必要条件25函数的极大
5、值点是 ( D ).(A) (B) (C) (D) 26设,则(B ).(A) (B) (C) (D) 27极限( B ).(A) 等于 (B) 不存在 (C) 等于 (D) 存在且不等于及28若在点处的两个一阶偏导数存在,则(B ).(A) 在点连续 (B) 在点连续 (C) (D) A,B,C都不对29. 设函数,则=( A )(A) (B)(C) (D)30. 已知( C )(A) (B) (C) (D)31函数z=的定义域是( D )(A.) D=(x,y)|x2+y2=1(B.)D=(x,y)|x2+y21(C.) D=(x,y)|x2+y21(D.)D=(x,y)|x2+y2132
6、设,则下列式中正确的是( C ); ; ; ; 33设,则( D ); ; ; ; 34已知,则( C ); ; ; 35. 设,则( B )(A)6 (B)3 (C)-2 (D)2. 36.设( B )(A) (B) (C) (D)37. 设由方程确定的隐函数( B )(A) (B) (C) (D)38. 二次函数 的定义域是( D ) A. 1 4; B. 1 4; C. 1 4; D. 1 4。39. 在点处的偏导数和连续是可微分的( B ) A.充分必要条件; B.充分非必要条件; C.必要非充分条件; D.非充分又非必要条件。40. 抛物面 上点P处的切平面平行于平面 ,则点P的坐标
7、是( C ) A. ; B. ; C. ; D. 41. 设 ,则( B ) A. ; B. ; C. ; D. 。42. 设二元函数 的极小值点是( A )A.(1,0); B.(1,2); C.(-3,0); D.(-3,2)43. 设( B ) (A)0 (B) (C)-1 (D)144. 设是由方程决定的隐函数,则( D )(A) (B) (C) (D)45. 设( B )(A) (B) (C) (D)二、填空题1. 2. 函数u=ln ()在点M(1, 2, -2)的梯度gradu= 1, 2, -23. 24. 已知是可微函数,则5. = 46设,则 7曲线在点处的切线与Y轴的正向
8、夹角是 8设,则 9函数的间断点是 10函数在点沿方向的方向导数是 11. 函数的定义域是12.二元函数的定义域是13函数在原点沿方向的方向导数为 14.函数的定义域是15.曲面在点处的法线方程为 16极限 17若,则 18设有函数,则 19.函数的极大值点是 20设函数则方向导数 21设函数 22曲面上一点(1,-1,3)处的切平面方程为 23. 在点P(0,1,3)处的切平面方程 2y+z=5 ,法线方程 24、设,则全微分dz= 25、设z= 26、已知 27. = 28. 已知,则 29. 已知,则 三、计算与证明1. 设z=f (x+y, xy)的二阶偏导数连续, 求 解:= = 2
展开阅读全文