测量系统分析MSA-GRR课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《测量系统分析MSA-GRR课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 测量 系统分析 MSA_GRR 课件
- 资源描述:
-
1、2023-5-7测量系统分析MSA_GRR测量系统分析测量系统分析MSA_GRR测量系统分析MSA_GRR课程大纲:n测量系统分析的意义和目的;测量系统分析的意义和目的;n测量系统分析的定义:测量系统分析的定义:测量系统、量具、测量、测量过程;n测量系统分析的基础知识:测量系统分析的基础知识:1)、测量系统的统计特性:偏倚、重复性、再现性、稳定性、线性、分辨力 2)、理想的测量系统 3)、测量系统的共同特性 4)、测量系统的评定步骤和准备n计量型测量系统的分析方法计量型测量系统的分析方法 1)偏倚 2)稳定性 3)线性 4)重复性和再现性(R&R)计数型测量系统的分析方法计数型测量系统的分析方
2、法 1)小样法 2)大样法测量系统分析MSA_GRR测量的重要性n如果测量出现问题,那么合格的产品可能被判为不合格,不合格的产品可能被判为合格,此时便不能得到真正的产品或过程特性。n因此,要保证测量结果的准确性和可信度。PROCESS原料人机 法环测量测量测量测量结果合格不合格测量测量测量系统分析MSA_GRR测量误差Y=x +n 測量值 =真值(True Value)+測量誤差戴明說沒有真值的存在一致测量系统分析MSA_GRR测量误差的来源:nDiscrimination 分辨能力nPrecision 精密度(Repeatability 重复性)nAccuracy 准确度(Bias偏差)nD
3、amage 损坏nDifferences among instruments and fixtures(不同仪器和夹具间的差异)nDifference in use by inspector 不同使用人员的差异(Reproducibility再现性)nDifferences among methods of use(使用不同的方法所造成差异)nDifferences due to environment(不同环境所造成的差异)测量系统分析MSA_GRR测量的变异说明 测量系统分析MSA_GRR为什么要进行测量系统分析n即使量具经过检定或校准,由于人、机、料、法、环、测等五方面的原因,会带来测量
4、误差。n检测设备的检定或校准不能满足实际测量的需要。n因此,还需要对测量系统进行评价,分析测量结果的变差,从而确定测量系统的质量,以满足测量的需要。n满足QS9000、ISO/TS16949标准的要求:ISO/TS16949:2002标准7.6.1规定:为分析出现在各为分析出现在各种测量和试验设备系统测量结果的变差,必须进行适当的统种测量和试验设备系统测量结果的变差,必须进行适当的统计研究。此要求必须适用于在控制计划中提及的测量系统。计研究。此要求必须适用于在控制计划中提及的测量系统。这些分析方法以及接收准则的使用必须符合顾客的测量系统这些分析方法以及接收准则的使用必须符合顾客的测量系统分析参
5、考手册。分析参考手册。采用其他的分析方法和接受准则必须获得顾采用其他的分析方法和接受准则必须获得顾客的批准。客的批准。测量系统分析MSA_GRR测量系统分析的目的n运用统计分析方法,确定测量系统测量结果的变差(测量误差),了解变差的来源。从而确定一个测量系统的质量,并且为测量系统的改进提供信息。n保证所用统计分析方法及判定准则的一致性。测量系统分析MSA_GRR测量系统的基本知识和概念n术语n测量系统及其统计特性 分辨力、稳定性、偏倚、重复性、再现性、线性n理想的测量系统 n测量系统的共同特性n测量系统的评定步骤和准备测量系统分析MSA_GRR术语n测量:赋值给具体事物以表示他们之间的关系。而
6、赋予的值定义为测量值。n量具:任何用来获得测量结果的装置,经常用来特指用在车间的装置,包括用来测量合格不合格的装置。n测量系统:用来对被测量特性赋值的操作、程序、量具、设备、软件以及操作人员的集合。测量系统分析MSA_GRR测量系统的组成 测量系统人机料法环操作人员量具/测量设备/工装被测的材料/样品/特性操作方法、操作程序工作的环境测量系统分析MSA_GRR测量系统的统计特性 通常使用测量数据的统计特性来衡量测量系统的质量:通常使用测量数据的统计特性来衡量测量系统的质量:nDiscrimination 分辨力(ability to tell things apart);nBias 偏倚;nR
7、epeatability 重复性;nReproducibility再现性;nLinearity 线性;nStability 稳定性。测量系统分析MSA_GRR分辨力(率)n定义:指测量系统检出并如实指示被测特性中极小变化的能力。n传统是公差范围的十分之一。建议的要求是总过程6(标准偏差)的十分之一。T1030测量系统分析MSA_GRR偏倚偏倚(Bias)(Bias):基准值观测平均值 偏倚偏倚偏倚:是测量结果的观测观测平均值平均值与基准值基准值的差值。基准值的取得可以通过采用更高级别的测量设备进行多次测量,取其平均值来确定。测量系统分析MSA_GRR重复性(Repeatability)重复性重
8、复性重复性是由是由一个一个评价人,采用评价人,采用一种一种测量仪器,多次测量测量仪器,多次测量同一同一零件的零件的同一同一特性时获得的测量特性时获得的测量值变差。值变差。测量系统分析MSA_GRR再现性(Reproducibility):再现性再现性是由是由不同不同的评价人,采的评价人,采用用相同相同的测量仪器,测量的测量仪器,测量同一同一零件的零件的同一同一特性特性时测量平均值时测量平均值的变差。的变差。再現性操作者操作者B B操作者操作者C C操作者操作者A测量系统分析MSA_GRR稳定性(Stability):稳定性 时间1时间2稳定性:是测量系统在某持续时间持续时间内测量同一同一基准或
9、零件的相同相同特性时获得的测量值的总变差。测量系统分析MSA_GRR线性(Linearity):量程量程基准值观测平均值 基准值线性是在量具预期的工作范围内,偏倚值的差值线性是在量具预期的工作范围内,偏倚值的差值 测量系统分析MSA_GRR线性(Linearity):观测的平均值 基准值无偏倚有偏倚测量系统分析MSA_GRR测量系统的分析 n测量系统的变差类型:测量系统的变差类型:n 偏倚、重复性、再现性、稳定性、线性n测量系统特性可用下列方式来描述测量系统特性可用下列方式来描述:n位置:稳定性、偏倚、线性。位置:稳定性、偏倚、线性。n宽度或范围:重复性、再现性。宽度或范围:重复性、再现性。测
10、量系统分析MSA_GRR位置和宽度 位置寬度位置寬度标准值测量系统分析MSA_GRR理想的测量系统 n理想的测量系统在每次使用时:应只产生“正确”的测量结果。每次测量结果总应该与一个标准值相符。一个能产生理想测量结果的测量系统,应具有零方差、零偏倚和所测的任何产品错误分类为零概率的统计特性。测量系统分析MSA_GRRIDEAL MEASUREMENT SYSTEM真值真值测量系统分析MSA_GRR测量系统所应具有的特性:n测量系统必须处于统计控制中测量系统必须处于统计控制中,这意味着测量系统中的变,这意味着测量系统中的变差只能是由于普通原因而不是由于特殊原因造成的。这可差只能是由于普通原因而不
11、是由于特殊原因造成的。这可称为统计稳定性称为统计稳定性;n测量系统的变异必须比制造过程的变异小测量系统的变异必须比制造过程的变异小;n变异应小于公差带变异应小于公差带;n测量精密应高于过程变差和公差带两者中精度较高者,一测量精密应高于过程变差和公差带两者中精度较高者,一般来说,般来说,测量精度是过程变异和公差带两者中精度较高者测量精度是过程变异和公差带两者中精度较高者的十分之一;的十分之一;n测量系统统计特性可能随被被测项目的改变而变测量系统统计特性可能随被被测项目的改变而变化。若真化。若真的如此,的如此,则测量系统的最大的变差应小于过程变差和公差则测量系统的最大的变差应小于过程变差和公差带两
12、者中的较小者。带两者中的较小者。测量系统分析MSA_GRR测量系统的评定 n第一阶段第一阶段:n 明白该测量过程并确定该测量系统是否满足我们的需要。主要有二个目的:1)、确定该测量系统是否具有所需要的统计特性,此项必须在使用前进行。n 2)、发现那种环境因素对测量系统显著的影响,例如温度、湿度等,以决定其使用的环境要求。n第二阶段第二阶段:n 目的是在验证一个测量系统一旦被认为是可行的,应持续具有恰当的统计特性。n 常见的量具R&R分析是其中的一种试验型式。n 测量系统分析MSA_GRR 计量型测量系统研究计量型测量系统研究 -指南指南测量系统分析MSA_GRR确定稳定性的指南确定稳定性的指南
13、n进行研究进行研究n1)取一个样本并建立相对于可溯源标准的基准值。如果该样品不可获得,选择一个落在产品测量中程数据生产零件,指定其为稳定性分析的标准样本。对于追踪测量系统稳定性,不需要一个已知基准值。n具备预期测量的最低值,最高值和中程数的标准样本是较理想的。建议对每个标准样本分别做测量与控制图。n2)定期(天,周)测量标准样本35次,样本容量和频率应该基于对测量系统的了解。因素可以包括重新校准的频次、要求的修理,测量系统的使用频率,作业条件的好坏。应在不同的时间读数以代表测量系统的实际使用情况,以便说明在一天中预热、周围环境和其他因素发生的变化。n3)将数据按时间顺序画在Xbar&R或Xba
14、r&S控制图上。测量系统分析MSA_GRRn结果分析结果分析作图法作图法n4)建立控制限并用标准控制图分析评价失控或不稳定状态。n结果分析结果分析数据法数据法n除了正态控制图分析法,对稳定性没有特别的数据分析或指数。n如果测量过程是稳定的,数据可以用于确定测量系统的偏倚。n同样,测量的标准偏差可以用作测量系统重复性的近似值。这可以与(生产)过程的标准偏差进行比较以决定测量系统的重复性是否适于应用。n可能需要实验设计或其他分析解决问题的技术以确定测量系统稳定性不足的主要原因。测量系统分析MSA_GRRn举例举例稳定性稳定性n为了确定一个新的测量装置稳定性是否可以接受,工艺小组在生产工艺中程数附近
15、选择了一个零件.这个零件被送到测量实验室,确定基准值为6.01。小组每班测量这个零件5次,共测量4周(20个子组)。收集所有数据以后,Xbar&R图就可以做出来了(见图示)。n控制图分析显示,测量过程是稳定的,因为没有出现明显可见的特殊原因影响。测量系统分析MSA_GRR稳定性的均值-极差图测量系统分析MSA_GRR确定偏倚指南确定偏倚指南独立样本法独立样本法n进行研究进行研究n1)获取一个样本并建立相对于可溯源标准的基准值。如果得不到,选择一个落在生产测量的中程数的生产零件,指定其为偏倚分析的标准样本。在工具室测量这个零件n10次,并计算这n个读数的均值。把均值作为“基准值”。n可能需要具备
16、预期测量值的最低值、最高值及中程数的标准样本是理想的。完成此步后,用线性研究分析数据。基准值测量系统的平均值偏偏倚倚测量系统分析MSA_GRRn2)让一个评价人,以通常方法测量样本10次以上。n结果分析结果分析作图法作图法n3)相对于基准值将数据画出直方图。评审直方图,用专业知识确定是否存在特殊原因或出现异常。如果没有,继续分析,对于n30时的解释或分析,应当特别谨慎。n结果分析结果分析数据法数据法n4)计算n个读数的均值。测量系统分析MSA_GRRn5)计算可重复性标准偏差(参考量具研究,极差法,如下):这里d2*可以从附录C中查到,g=1,m=nn如果GRR研究可用(且有效),重复性标准偏
17、差计算应该以研究结果为基础。测量系统分析MSA_GRRn6)确定偏倚的t统计量:n偏倚=观测测量平均值-基准值测量系统分析MSA_GRRn7)如果0落在围绕偏倚值1-置信区间以内,偏倚在水平是可接受的。n这里d2,d2*和v可以在可以从附录C中查到,g=1,m=n,在标准t中可查到。n所取的 水平依赖于敏感度水平,而敏感度水平被用来评价/控制该(生产)过程的并且与产品/(生产)过程的损失函数(敏感度曲线)有关。如果 水平不是用默认值.05(95置信度)则必须得到顾客的同意。测量系统分析MSA_GRRn举例-偏倚n一个制造工程师在评价一个用来监控生产过程的新的测量系统。测量装置分析表明没有线性问
18、题,所以工程师只评价了测量系统偏倚。在已记录过程变差基础上从测量系统操作范围内选择一个零件。这个零件经全尺寸检验测量以确定其基准值。而后这个零件由领班测量15次。测量系统分析MSA_GRR表表2:2:偏倚研究数据偏倚研究数据 基准值=6.0 偏倚1 5.8 -0.22 5.7 -0.33 5.9 -0.14 5.9 -0.15 6.0 0.06 6.1 0.17 6.0 0.08 6.1 0.19 6.4 0.410 6.3 0.311 6.0 0.012 6.1 0.113 6.2 0.214 5.6 -0.415 6.0 0.0测量系统分析MSA_GRRn用电子表格和统计软件,可获得直方图
19、和数据分析(见图10和表3)。测量值测量系统分析MSA_GRR表表3 3:偏倚研究:偏倚研究偏倚研究分析偏倚研究分析n(m)均值 X标准偏差r均值的标准偏差b测量值156.0067.22514.05813基准值=6.00,=.05,g=1,d2*=3.35t统计量df显著t值(2尾)偏倚95偏倚置信区间低值高值测量值.115310.82.206.0067-1.1185.1319测量系统分析MSA_GRRn因为0落在偏倚置信区间(-0.1185,0.1319)内,工程师可以假设测量偏倚是可以接受的,同时假定实际使用不会导致附加变差源。n偏倚研究的分析偏倚研究的分析:n如果偏倚从统计上非0,寻找以
20、下可能的原因:标准或基准值误差;仪器磨损。这在稳定性分析可以表现出,建议按计划维护或修整;仪器制造尺寸有误;仪器测量了错误的特性;仪器未得到完善的校准,评审校准程序;评价人设备操作不当,评审测量说明书等;测量系统分析MSA_GRR确定线性指南确定线性指南n进行研究进行研究n线性按以下指南评价:1)选择g5 个零件,由于过程变差,这些零件测量值覆盖量具的操作范围。2)用全尺寸检验测量每个零件以确定其基准值并确认了包括量具的操作范围。3)通常用这个仪器的操作者中的一人测量每个零件m10次。随机的选择零件以使评价人对测量偏倚的“记忆”最小化。测量系统分析MSA_GRRn确定每一零件的观察平均值,基准
21、值与观察平均值之间的差值为偏倚,要确定各个被选零件的偏倚。线性图就是在整个工作范围内的这些偏倚与基准值之间描绘的。如果线性图显示可用一根直线表示这些标绘点,则偏倚与基准值之间的最佳线性回归直线表示两个参数之间的线性。线性回归直线的拟合优度R2确定偏倚与基准值是否有良好的线性关系。测量系统分析MSA_GRRn计算偏倚:偏倚=观测平均值 基准值n过程变差=6 n画图:nX軸=基准值nY軸=偏倚n其方程式为:y=b+axn再分別计算其:n截距,斜率,拟合度,线性,线性%等 测量系统分析MSA_GRR公式测量系统分析MSA_GRRn 系统的线性及线性百分率由回归线斜率及零件过程变差(或公差)计算得出。
展开阅读全文