高温高压地层测试技术介绍课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高温高压地层测试技术介绍课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高温 高压 地层 测试 技术 介绍 课件
- 资源描述:
-
1、主讲:程焕清中石化试油监督培训讲座随着油气勘探的发展,向地层深部找油气的局面已展示在油气勘探工作者面前。前苏联钻探的SG-3井,钻探深度12000米,四川钻探最深的井达到7175米,近年钻探的柯深1井为6336.5米,英科1井完钻井深6400米,库1井完钻井深6941.15米,更有亚洲第一深井塔参井,井深达到7200米。由于井越来越深,随之带来了井底温度高、压力大等情况。这给完井测试带来许多的困难。高温高压井在国外称为HTHP井(High Temperature and/or High Pressure),根据国际HTHP合作促进协会的规定,油气井的地层温度达到300(149),或地层压力达到
2、15000Psi(103.4MPa),或井口压力达到10000Psi(68.9MPa)以上称为高温高压井。若油气井的地层温度达到400(204),或地层压力达到20000Psi(137.8MPa),或井口压力达到15000Psi(103.4MPa)以上称为超高温高压井。高温高压井的地层测试技术是一个世界级的石油勘探的技术难题,它引起了中石油、中石化、中海洋和世界各大石油公司的高度重视,国际上西方跨国石油公司主动与石油技术服务公司进行技术合作,在八十年代由11家油公司发起了HPHT合作促进会,协会下属不同专业的分会,其中包括测试分会,总部设在欧洲的NORWAY。SHULUMBERGER、HALL
3、IBURTON和EXPRO等公司被邀参加HPHT测试分会。HTHP协会的性质是会员制,制度规定技术成果和技术文件只能由会员分享,不得对外扩散。通过引进消化国外的测试设备,并在实际施工中积累了一定的经验,缩短了与发达国家的差距,取得很大的进步。但井下测试工具、井下仪器、地面井口控制设备、地面计量设备、射孔校深仪器及射孔器材,高密封性能的油管、套管和一些必须的处理剂等,主要都还依靠进口。针对高温高压井的测试,石油大学、西安石油学院、西南石油学院、江汉石油学院与专业公司合作,相继开发了高温高压井测试管柱力学分析软件、套管强度力学分析软件,并在现场试用,这些成果的应用为提高施工质量和安全性提供了技术支
4、持。不过也还存在一些计算精度不高,计算项目不全等问题,还需继续完善。广大试油工作者,在过去的高温高压井试油测试实践中也积累了很多经验,解决了不少生产中存在的实际问题,但也存在一个将一些高温高压测试的理论与实践相结合,并通过这种结合去推动这项技术发展的问题。由于高温高压测试工作包含的工艺面广,涉及的专业多,而每个人的精力是有限的,这就要求我们不同专业人员,从不同的专业角度出发,去研究、实践解决高温高压测试的问题,共同把我国高温高压测试技术提高到一个新的水平。1、高温高压给井口控制设备、油管、井下工具、套管等的密封性提出了更高的要求。在施工中,曾发生过井口突然被刺坏及井下工具被刺坏的事故。2、由高
5、温高压引起的变形量增大,对测试管柱强度提出了更高的要求。在实践中遇到过安全系数仅为1.11.2的情况,在这种条件下施工,存在较多的不安全因数。也曾发生过油管被挤毁的事故。3、井身结构与试油测试工具不配套。目前的射孔枪、射孔弹、井下工具系列与超深井的井身结构还不配套。使试油期间工具选型困难,有时只好改变封隔器的座封位置。4、放喷期间,地层流体携带砂粒高速流动,极易刺坏针阀、油嘴管汇,使下游压力突然增高,威胁下游设备安全和人身安全。5、对产量、流压、温度控制不当,或加热炉供热不足,可能会使地面测试流程内形成天然气水合物,堵塞地面测试流程,对地面设备和人员安全造成极大威胁。6、井口压力有时可达到井口
6、设备的额定工作压力,此时,井口必须放压。试采时,造成井口时关时开,最终导致地层垮塌或地层严重出砂而终止测试。7、套管剩余强度不足,导致低替时,套管变形,全井报废的恶性事故发生。8、封隔器突然失封时,环空压力突然升高,导致表层套管破裂,进而憋裂地表地层,井场四周冒气。9、TCP射孔的火工器材在高温条件下,性能不稳定,导致射孔火工品在下钻过程中自行爆燃,造成返工。10、井下关井阀在高温高压条件下关闭不严密,取不到合格的地层压力资料。11、机械压力计时钟停走、时停时走或走速不均匀的故障时有发生。电子压力计也不能长时间在高温高压下稳定工作,影响资料录取。12、压井液在高温条件下性能不稳定,造成埋卡封隔
7、器。13、现在深井试油测试都是靠环空加压控制井下工具的动作。而在深井条件下,压井液传压性能变差,给地面加压操作带来一些假象,使工具操作失误。14、测试过程中,封隔器以下的压井泥浆会被地层产出的油气所置换排出。而测试管柱中的循环阀一般装在封隔器的上方,当循环压井时,封隔器以下的油气不能被完全置换。在起钻过程中,这些在压井液浮力作用下油气向上移动,随着压力的减小,其中的气体体积越来越膨胀,到达井口时就非常危险,极易引起火灾事故。15、通井刮管时,未按标准规程操作,导致套管壁清理不干净。在下封隔器时,套管壁上残留的水泥块被封隔器通径规环刮掉,落在封隔器摩擦块间隙里,卡死摩擦块,减少了摩擦块与套管壁之
8、间的摩擦力,导致封隔器座封困难。16、一些人为的低级错误时有发生,导致重大事故。如井下落物、吊卡和卡瓦与油管不配套等。17、解封封隔器时,上提解封负荷控制不当,将上部油管接箍提变形。这次介绍的内容,主要是针对陆上油田高温高压井常用的测试工艺和测试设备进行介绍的。其中管柱力学分析,套管强度分析,也是针对目前高温高压井所选用的测试工艺和测试管柱条件来进行的。l地层压力的预测 l井下最高温度的预测 l最高井口关井压力的预测 l生产压差的确定 l井口流动温度预测 l井口流动压力的预测 l天然气水合物生成条件的计算 l井口套压的预测 l放喷管线输气管流通能力计算l封隔器承受最大压差校核在试油设计时,地层
9、压力的预测主要根据钻开油气层时的泥浆密度,气测后效显示情况,进出口泥浆比重变化情况来进行预测。深1井,在钻6387.06410.0米的钻进过程中,泥浆密度逐步由1.86加重到1.94 2.01 2.07g/cm3在预测地层最大压力时,以钻进过程中井涌时泥浆柱压力作为近似地层压力,预计地层压力系数为1.97,推算出6402.06410.0米中部地层压力为123.76Mpa,在试油过程中用电子压力计实测的地层压力为127.8Mpa。1井钻至6732米以下,用1.7的泥浆密度不能平衡孔隙压力,泥浆气侵严重,井涌CL-由2500 5200ppm,完钻时泥浆比重1.952.02,此时泥浆气测背景值仍较高
10、(全烃27),分析认为此段孔隙流体压力系数可能达到2.02 g/cm3,预测地层压力6778.5*2.02*9.8=134.19Mpa,在后来的试油中,实测地层压力为135.84Mpa。采用钻开油层泥浆比重取值方法,来预测地层压力是很近似的,粗略的。比较好的方法是用RFT,但成本高。其次还可以用密度、声波测井方法来预测地层压力。但这些方法只适用于砂泥岩地层,对灰岩地层不宜用。气测的dc指数法也可以用。目前主要是应用测井的方法获取地层温度,但在实际应用中发现,地层的真实温度往往比测井提供的温度高出712。试油获得地层温度比测井提供的地层温度高的原因主要是试油测试时,电子压力计在井下停留的时间长,
11、压井液与地层的热交换充分一些。另一方面在试油测试时,地层流体是在流动的,而测井时,井筒流体是静止的,所以我们在试油设计时,井下最高温度应该是在测井温度的基础上加上712,才比较近似于地层温度。求井口最高关井压力的问题,实际就是确定油管内气柱平均静压梯度,一旦把油管内气柱平均静压梯度找到,最高关井压力就获得了。近年来根据我们在西部地区的试油实践统计得出在井口关井时,测试管柱内的平均静压梯度为0.28Mpa/100米。用这个经验对早年试油的井实测的数据进行比较。此井试油井段7053.377175.00米,实测地层压力151.8Mpa,实测井口关井压力132.8Mpa。这个关井压力与用经验推算出的“
12、关井时平均静压梯度”很近似。第二种方法是钻井甲方手册第二种方法是钻井甲方手册124124页推荐的页推荐的井口关井压力公式:井口关井压力公式:P PG G=0.7882P=0.7882PB B式中式中P PG G井口关井压力(气顶压力)井口关井压力(气顶压力)P PB B地层压力(气柱底部压力)地层压力(气柱底部压力)第三种方法是四川川西北矿区推荐的最高第三种方法是四川川西北矿区推荐的最高关井压力近似公式:关井压力近似公式:式中式中P PG G井口关井压力(气顶压力);井口关井压力(气顶压力);P PB B近似地层压力;近似地层压力;r r 天然气密度;天然气密度;L L气层中部深度;气层中部深
13、度;e e 自然对数;自然对数;LBPr10251.14eLBGPPr10251.14e在高温高压气井测试过程中,生产压差(或测试压差)的大小,是测试成败的关键因素之一。生产压差过小,会造成:侵入地层中的钻井泥浆固相微粒难以排除,达不到清除井壁附近污染的目的;使地层中的泥浆滤液难以排出;使相邻工作制度之间压差范围小,天然气产量变化小,由此建立的产能方程精度偏低,影响对储层的评价。而生产压差过大,又可能造成:使井壁失稳、垮塌、地层出砂而导致测试失败;使井壁附近储层岩石永久性压密,再次造成应力污染;造成气体渗流的非线性效应严重,使得压力恢复资料所求得的地层渗透率值,不能反映真实的地层参数。为此,确
14、定高温高压气井测试中合理生产压差需要综合以下因素:1、从气流在井筒中携液能力的角度考虑。在钻井和完井过程中,都可能残留液体在地层,在气井的测试过程中,一开井的一个重要的作用就是要排除地层积液,因此,在设计生产压差时,必须要考虑能在测试一开时,就将地层积液排出。2、从返排侵入地层中的泥浆固相颗粒角度考虑。在高温高压气井钻井过程中,泥浆侵入到储层孔隙中,一些固相颗粒就脱离出来,堵塞储层渗流通道,降低储层渗透率。为此,在测试时,需要气流具有一定的速度,让泥浆固相颗粒返排出来,以减少储层伤害。3、气体渗流时,在孔隙周围产生附加压力降,易造成气堵,会影响测试数据分析的质量,造成分析结果的错误。4、从井壁
15、稳定不出砂的角度考虑。生产压差越大,井眼周围岩石骨架应力越大,储层越容易破坏出砂。因此,在考虑合理生产压差时,必须考虑保护储层避免出砂的问题。从3方面考虑:一是从井壁岩石的坚固程度确定生产压差;二是从井壁岩石抗剪切强度确定生产压差,当生产压差是岩石剪切强度的1.7倍时,岩石开始破坏并出砂。国内外通过大量的分析计算表明,该方法预测准确度极高;三是从射孔孔道稳定性角度确定生产压差。5、从清除射孔孔道残余物角度考虑。在施工中,通过严格控制井口压力来实现生产压差的控制,我们在设计阶段提高这方面的计算是很有必要的,四川、江汉、华东、西安等石油学院,都有这方面的计算软件,可供选定合理生产压差作参考。计算测
16、试管柱的温度效应的变化,确保测试管柱的安全,防止井口温度过高或过低对井口设备性能造成影响。因此计算出测试求产时,产量与井口温度变化的关系就显得很重要。四川西北矿区根据美国深气井完井的资料介绍,把该资料中提供的产层温度产量与井筒温度关系曲线,拟合成下面计算公式,并在实际施工中应用检验,理论计算与实际测得的值比较符合。t0=(t-t0)(1.2129510-2Q-4.691910-5Q2)+t0式中:t0井口常年平均气温,;t0产气量为Q时井口最高温度,;t 气层中部温度,;Q测气时气产量;从近年来实践情况,这个公式在产干气条件下比较适用,如气中含水或凝析油时,这公式的误差还是较大的。一般采用下式
17、计算:P12=P22e2sss222d1e377.1)(平均平均ZTQZTLrs平均平均03515.0273200MLTT平均00TLM实测井底温度实测井温深度式中:d油管内径;P1井口流动压力;P2井底压力;e自然对数;s系数;摩阻系数;Q天然气产量;T平均油管平均温度;Z平均天然气压缩系数;r 天然气比重;M0地热增温率;T0气井地面平均温度;确定水合物形成压力和温度的方法有:(1)经验公式法,包括波诺马列夫法,二次多项式法。(2)图解法有两种:一种是按不同密度作出的天然气生成水合物的温度与压力关系曲线。另一种是判断天然气经过节流阀处是否形成水合物的节流曲线。用上述方法可计算出:(1)油咀
18、管汇上游水化物生成的温度,压力值;(2)油咀管汇下游水化物生成的压力和温度值;(3)油咀管汇节流前后温度的变化值。为了防止水合物的生成,在现场施工中,一般都采用锅炉加热的办法,使气流温度高于给定压力下水合物的生成温度从而实现阻止水合物的生成。同时还在节流管汇的数据头上,安装一个化学注入泵,此泵的输出压力高于管汇中的气流压力,可直接向管内注入乙二醇等抑制剂,降低水合物生成的温度,当然在地层生产压差允许的情况下,也可通过调节口压力,使其低于井口流动温度下水合物生成的压力。陆上用的深井测试管柱,多数都是引进哈力伯顿公司制造的APR工具,而这种工具的井下阀关井的操作,井下循环阀开启的操作,都是靠环空施
19、加泵压来实现的,必须预测出在不同产量条件下井口套压值,并对它进行严格监控,才能确保井下循环阀和井下关井阀破裂盘的安全。P=0.7401tP测试时井口套压的增量,Mpa;t封隔处管柱的平均温度增量,;式中:t0产量为Q时,井口温度,;t0地面常年平均气温,;t封天然气产量为Q时,封隔器处的温度,;t封0封隔器坐封时,该处的温度,;2()(t000)封封tttt放喷管线输气管流通能力计算,可查阅四川石油管理局编写的天然气工程手册。在气井测试中,若遇到高压低产气井,当测试液垫被排出后,封隔器可能需承受非常大的压差,如不适当控制井口回压,就会损坏封隔器。l 测试管柱力学分析l 井下套管力学分析 l 井
20、下工具力学分析这里讲的测试管柱是特指的由油管、井下工具和各种配合接头组成的,属于一种细长的特殊机械杆件。它在井内受到多种载荷的共同作用。如自重、钻压、管内流体压力、管外流体压力及管内流体摩阻的作用。这些外力的作用,会使管柱产生各种类型的管柱变形。流体流动会导致管柱温度变化,在材料的热胀冷缩效应作用下,引起管柱伸长或缩短,称为温度效应。管柱自重、管内流体流动时的粘滞摩阻使管柱产生轴向变形,称为轴力效应。管内外流体压力的变化使管柱产生径向变形,根据材料力学理论,管柱轴向也将产生相应变形,称为鼓胀效应。在钻压作用下管柱产生弯曲变形,受套管约束后产生螺旋弯曲。这些管柱变形会产生一定的应力,若应力过大,
21、必然会损坏测试管柱。现我们就针对近期陆上油田所用的高温、高压测试管柱进行分析。为分析方便,我们把全部测试过程分为七种工况进行。这七种工况是:下钻完、低替、坐封、射孔、关井、开井、压井、高挤酸。然后分别计算出这七种工况下,测试管柱所受应力和强度、安全系数、井下管柱轴向变形量。根据上述七种工况,很容易判别在测试施工过程中,其测试管柱的危险截面一般在井口处、油管壁厚变簿处、封隔器顶部和封隔器中心管等处。这些分析还应包括:l 油管下深计算。目的是校核油管拉伸应力安全系数,安全系数一般应不低于1.5。l 管柱强度计算。目的是找出测试管柱危险截面,并用第四强度理论对危险截面进行强度校核,安全系数一般应不低
22、于1.5。l 测试管柱变形量分析。在深井试油设计中,在分析测试管柱轴向变形时,是将井下管柱轴向变形分为温度变形、膨胀变形、轴向力(包含活塞力)变形、螺旋弯曲变形四个分量,然后依据上述七种工况,分别计算出这四个分量条件下管柱的变形量,并将坐封工况下上述四种变形的数值视作为“零点”,其它工况下管柱的各个变形分量与“零点”分量的差值对应称作“温度效应”、“膨胀效应”、“轴力效应”、“螺旋弯曲效应”。然后分别算出这四种效应所引起的管柱的变形。上述四种效应在七种不同工况下都可求得一个测试管柱(伸长或者缩短)的变形量的代数和。根据材料力学理论,若这种变形量受到限制,将转化为对测试管柱的轴向力,使管柱伸长或
23、缩短。如在某井施工时,经计算,在高挤酸时,各种效应变形量的代数和,使管柱缩短2.82米,因水力锚的限制,此“缩短”变形量转化为对下部管柱的拉力,2.82米缩短变形转化为约为18吨拉力。在井下关井时,由于是在环空加压,打开破裂盘,才能实现关井。环空打压,测试管柱受挤压,管柱会伸长。关井时期环空液体的温度与封隔器座封时相比,温度会升高,也会使管柱伸长。如某井经计算,找出了在测试施工时井下关井过程中,各种效应变形量的代数和,使管柱伸长量最大为2.57米。由于水力锚限制了管柱伸长,这个伸长的变形量,转化为对下部管柱的压缩力(约16吨)。通过这些计算,我们可选择永久式封隔插入密封管的长度,校核可回收封隔
24、器上水力锚的锚定力是否安全,或确定是否应加伸缩接头。射孔段套管围压及剩余强度分析目的是校核套管射孔段的剩余承载能力系数,最大抗外挤强度,最大抗内压强度。射孔段套管的剩余强度与射孔孔密、孔径、相位有关。井下套管磨损程度及剩余强度分析。目的是确定套管内允许替浆的最低密度。套管磨损程度与井斜角、狗腿度、钻具组合、钻压有关,因这些因素直接影响钻具与套管的接触力。另转盘转速、钻进速度、起下钻次数等因素,会直接影响磨损时间和磨损深度。高压段套管围压及强度分析目的是校核套管在高压地层段会不会发生套管被挤毁的事故。易塌地层段套管围压及强度分析目的是研究地层易塌段固井没套管强度是否安全。判断易塌地层的方法是根据
25、测井井径。狗腿严重段套管围压及强度分析 根据钻井手册(甲方)提供的方法进行计算可找出:1.套管磨损程度及剩余强度,确定替泥浆时,泥浆密度下限值。2.分析出套管段的危险面。3.确定出全井套管试压时泵压的上限值。4.假设封隔器失封高压气流串入油套这间,此时允许环套关闭的最高压力值。5.提供环空的最大允许掏空深度。工具的抗拉强度、抗内、外压力及防腐蚀气体性能指标,主要应由制造商提供,或由第三方进行认证。在试油设计时,最好对工具结构中的空气腔部分,封隔器中心管部分进行强度校核,过去曽多次发生过封隔器中心管断裂事故。工具丝扣的密封性,主要是靠地面试压来验证。主要设备器材准备 作业队(钻井队)应做的准备泥
展开阅读全文