35kV电缆振荡波局放检测试验方案设计(DOC 20页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《35kV电缆振荡波局放检测试验方案设计(DOC 20页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 35kV电缆振荡波局放检测试验方案设计DOC 20页 35 kV 电缆 振荡 波局放 检测 试验 方案设计 DOC 20
- 资源描述:
-
1、35kV电力电缆振荡波局部放电检测试验方案 XXX XXX 编写:XXX XX电科院试验所日期:35kV电力电缆振荡波局部放电检测试验方案一、概况XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。XLPE电缆在制造和接头操作过程中,绝缘层内部易出现的杂质、微孔、半导电层突起和分层缺陷,当外护套被侵蚀后引起的进水,水树枝演化成电树枝之后均会引起局部放电的发生。长期的实践证明,局部放电是造成电力电缆绝缘破坏的主要原因。首先,在局部放电的过程中,电离出来的电子、正负离子在电场力的作用下具有较大的能量,当它们撞到绝缘内空气隙的绝缘
2、壁时,足以打断绝缘材料高分子的化学键,产生裂解。其次,在放电点上,介质发热可达到很高的温度,使得绝缘材料在放电点被烧焦或熔化,温度升高还会产生热裂解或促使氧化裂解,同时温度升高会增大介质的电导和损耗,由此产生恶性循环,导致绝缘体破坏。第三,在局部放电过程中会产生许多活性生成物,这些生成物会腐蚀绝缘体,使得介质性能劣化。第四,局部放电有可能产生X射线和Y射线,这两种射线具有较高的能量,促使高分子裂解。除此之外,连续爆破性的放电以与放电产生的高压气体都会使绝缘体产生微裂,从而开展成电树枝。局部放电会不断地破坏绝缘材料,最终导致绝缘击穿。电力电缆局部放电量与电力电缆绝缘状况密切相关,局部放电量的变化
3、预示着电缆绝缘存在着可能危与电缆安全运行的缺陷。因此,国内外许多专家、学者与一些国际电力权威机构一致推荐局部放电试验为绝缘电力电缆绝缘状况评价的最优方法,并作为与时发现电缆故障隐患、预测电缆运行寿命、保障电缆安全可靠运行的重要手段。 OWTS振荡波电缆局部放电检测和定位技术,是目前国际国内应用比拟广泛的能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害的先进技术。从我国2008年初引进该技术,并成功的应用到奥运场馆与配套设施的电缆检测中,发现了多起电缆接头缺陷,取得了较好的成效,为奥运保电工作作出了一定的贡献。到目前为止,振荡波技术由于其电源与交流电源等效性好,作用时间短、操作
4、方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害,在中国大江南北,包括国庆阅兵、青奥会、亚运会、G20、互联网大会等等、在绝大多数电力单位运用相当广泛。电力电缆由于其电容量大,很难在现场进展工频电压下的局部放电检测。过去充油电缆采用直流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电压分布差异较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆投运后,这些空间电荷常造成电缆的绝缘击穿事故。采用超低频0.1Hz电源进展试验,要求试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷。振荡波电压是近年
5、来国内外研究较多的一种用于XLPE电力电缆局部放电检测和定位的电源。该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害4。电缆振荡波检测技术属于离线检测的一种有效形式 。该技术基于LCR阻尼振荡原理,在完成电缆直流充电的根底上,通过内置的高压电抗器、高压实时固态开关与试品电缆形成阻尼振荡电压波,在试品电缆上施加近似工频的正弦电压波,激发出电缆潜在缺陷处的放电信号。振荡波检测技术起源于欧洲的荷兰大学,系统由瑞士和德国在20世纪90年代研制开发,并在德国、瑞士等国生产,该技术在2007年引进中国。通过现场试验,在不损害电缆本体
6、绝缘的情况下检查配电电缆的绝缘状况与其内部局部放电情况,以对其绝缘进展评估。二、振荡波工作原理:基于OWTS技术的测试电压产生原理如图1所示。直流高压电源首先通过线性连续升压方式对被测电缆进展逐步充电充电电流恒定、加压至预设值。加压完成后,固态高压开关S激光触发场效应管LTT在小于1S的时间内闭合,使被测电缆电容与OWTS系统中高压电感L产生谐振,从而在被测电缆上产生阻尼振荡交变电压DAC,其波形与频率接近工频电压,且持续时间为mS级,对电缆绝缘无损伤。电缆振荡波局部放电检测根本原理如图1所示:图1 电缆振荡波局放测试原理用直流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态
7、开关S闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进展振荡。空心电感值根据谐振频率的要求进展选择,频率X围5O1000Hz,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q一般为30100,振荡波以谐振频率在0.31s内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C和值可通过振荡波的时间和频率特性来计算。系统采用脉冲反射法进展局部
8、放电定位,原理示意如图2所示。测试一条长度为的电缆,假设在距测试端处发生局部放电,脉冲沿电缆向两个相反方向传播,其中一个脉冲为方便起见,本文中称为“入射波经过时间t1到达测试端;另一个脉冲本文中称为“反射波向测试对端传播,并在对端发生反射,之后再向测试端传播,经过时间t2到达测试端。根据两个脉冲到达测试端的时间差,可计算局部放电发生位置,即式中,为脉冲在电缆中传播的波速。图2 脉冲反射法原理示意图对于长电缆,反射信号有衰减以与背景噪音影响大的解决方案双端测量 传统单端振荡波测试系统是基于在被测电缆的一端检测局放初始信号和同一局放事件从电缆远端折回反射信号的时间差。如果局放缺陷位于靠近电缆近端一
9、侧,局放的反射波形如此需途径超过1,5倍电缆全长的路径才能到达近端的检测单元,这会给局放信号带来无法防止的无谓衰减。 对于双端振荡波测试系统,在被测电缆的两端均会有一个局放测量单元用来检测局放初始信号,其特征是对于同一局放事件,两端捕捉的都是首先到达各自检测单元的局放信号。对于局放定位算法,这也就意味着系统所捕捉到的有效局放信号所途径的距离均小于被测电缆的全长。和单端测量系统相比,双端系统捕捉到的局放信号将拥有更小的信号衰减。因此对于长电缆的局放检测,双端系统会有更好的测量效果。双端定位系统 和单端测试类似,双端DAC测试同样需要预先设定加压周期序列。在双端DAC测试过程中,只需要在测试系统的
10、近端单元建立起一个测试序列,系统会自动生成一个数据库并可直接导入远端的测试单元。双端测试连接示意图关于电缆振荡波测试定位图谱的判断:直观位置映像图与德国OHV公司 DAC衰减曲线专利位置映像图典型的局部放电衰减曲线入射波与反射波电缆全长与接头位置的校验波形三、试验工作内容使用仪器:德国OHV M30/60电缆振荡波局放检测仪, Easyflex 多功能脉冲反射仪,绝缘摇表备选设备:电缆故障测试系统防止电缆本身绝缘低,试验中击穿德国OHV振荡波测试系统1、被测电缆要求与测试前准备1局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏;2尽量将电缆接头处PT、避雷器等其它设备拆除;3电缆头擦
展开阅读全文