函数周期性分类解析以及模拟题练习(DOC 14页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《函数周期性分类解析以及模拟题练习(DOC 14页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数周期性分类解析以及模拟题练习DOC 14页 函数 周期性 分类 解析 以及 模拟 练习 DOC 14
- 资源描述:
-
1、函数周期性分类解析一定义:若T为非零常数,对于定义域内的任一x,使恒成立则f(x)叫做周期函数,T叫做这个函数的一个周期。二重要结论1、,则是以为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a0),则f(x)为周期函数且2a是它的一个周期。3、 若函数,则是以为周期的周期函数4、 y=f(x)满足f(x+a)= (a0),则f(x)为周期函数且2a是它的一个周期。5、若函数y=f(x)满足f(x+a)= (a0),则f(x)为周期函数且2a是它的一个周期。6、,则是以为周期的周期函数.7、,则是以为周期的周期函数.8、 若函数y=f(x)满足f(x+a)= (xR,a
2、0),则f(x)为周期函数且4a是它的一个周期。9、 若函数y=f(x)的图像关于直线x=a,x=b(ba)都对称,则f(x)为周期函数且2(b-a)是它的一个周期。10、函数的图象关于两点、都对称,则函数是以为周期的周期函数;11、函数的图象关于和直线都对称,则函数 是以为周期的周期函数;12、 若偶函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且2是它的一个周期。13、若奇函数y=f(x)的图像关于直线x=a对称,则f(x)为周期函数且4是它的一个周期。14、若函数y=f(x)满足f(x)=f(x-a)+f(x+a)(a0),则f(x)为周期函数,6a是它的一个周期。15、
3、若奇函数y=f(x)满足f(x+T)=f(x)(xR,T0),则f()=0.三、典例讲解例1(05.福建12)是定义在R上的以3为周期的奇函数,且在区间(0,6)内解的个数的最小值是( )A6B7C4D5例2. 设函数的定义域为R,且对任意的x,y有,并存在正实数c,使。试问是否为周期函数?若是,求出它的一个周期;若不是,请说明理由。 例3. 已知是定义在R上的函数,且满足:,求的值。例4.(2009江西卷文)已知函数是上的偶函数,若对于,都有,且当时,则的值为 ( )A B C D例5. (天津卷05)设f(x)是定义在R上的奇函数,且y=f (x)的图象关于直线对称,则f (1)+ f (
4、2)+ f (3)+ f (4)+ f (5)= _例6(07安徽)定义在R上的函数既是奇函数,又是周期函数,是它的一个正周期.若将方程在闭区间上的根的个数记为,则可能为 ( ) A.0B.1C.3D.5 四、巩固练习 已知偶函数是以为周期的周期函数,且当时,则的值为 2设函数是定义在上的奇函数,对于任意的,都有,当时,则 3知是定义在实数集上的函数,满足,且时,.求时,的表达式;证明是上的奇函数(朝阳模拟)已知函数的图象关于点对称,且满足,又,求的值高三数学恒成立问题的类型及求解策略 恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考
5、查学生的综合解题能力,也为历年高考的一个热点。现将高中数学中常见的恒成立问题进行归类和探讨。一、 一次函数型:给定一次函数y=f(x)=ax+b(a0),若y=f(x)在m,n内恒有f(x)0,则根据函数的图象(直线)可得上述结论等价于)或)亦可合并定成同理,若在m,n内恒有f(x)2p+x恒成立的x的取值范围。二、 二次函数型若二次函数y=ax2+bx+c=0(a0)大于0恒成立,则有若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。例2定义在上的减函数,如果不等式组对任何都成立,求的取值范围。例3关于x的方程9x+(4+a)3x+4=0恒有解,求a的范围。
6、三、 变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。例4已知当xR时,不等式a+cos2x对于大于1的一切自然数n都成立, 求自然数m的最大值, 并证明所得结论。四、 直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。例6、当x(1,2)时,不等式(x-1)20. ()若a=1,求曲线y=f(x)在点(2,f(2)处的切线方程;()若
7、在区间上,f(x)0恒成立,求a的取值范围.函数的对称性与周期性一 函数的对称性(一)函数图象的自对称所谓函数图象的自对称是指一个函数图象的对称(中心对称或轴对称)图象是其本身.关于函数图象的自对称,有下列性质:1、奇函数的图象关于 对称,偶函数的图象关于 对称,反之亦然。2、二次函数的图象关于直线 对称。3、三角函数的图象关于直线 对称,它也有对称中心是 ; 的图象的对称轴是 ,对称中心是 。4、函数若对于定义域内任意一个都有,则其图象关于直线 对称。5、函数若对于定义域内任意一个都有,则其图象关于点 对称。6、曲线关于直线与()对称,则是周期函数且周期为(二)函数图象的互对称 所谓函数图象
8、的互对称是指两个函数图象的上的点一一对应,且对应点相互对称(中心对称或轴对称)。关于函数图象的互对称,有下列性质:1、互为反函数的两个函数的图象关于直线 对称;反之, 。2、函数与函数的图象关于直线 对称。3、函数与函数的图象关于直线 对称。4、函数与函数的图象关于点 对称。二 函数的周期性如果函数yf(x)对于定义域内任意的x,存在一个不等于0的常数T,使得f(xT)f(x)恒成立,则称函数f(x)是周期函数,T是它的一个周期.一般情况下,如果T是函数f(x)的周期,则kT(kN)也是f(x)的周期.关于函数的周期性的结论:1、已知函数对任意实数,都有,则是以 为周期的函数;2、已知函数对任
9、意实数,都有=,则是以 为周期的函数;3、已知函数对任意实数,都有=-,则是以 为周期的函数.4、已知函数对任意实数,都有,则是以 为周期的函数5、已知函数对任意实数,都有f(xm)f(xm),则 是的一个周期.6、已知函数对任意实数,都有f(xm),则 是f(x)的一个周期.7、已知函数对任意实数,都有f(xm),求证:4m是f(x)的一个周期.1 证明:由已知f(x2m)f(xm)m 于是f(x4m)f(x)所以f(x)是以4m为周期的周期函数.8、已知函数f(x)对任意实数x,都有f(ax)f(ax)且f(bx)f(bx),求证:2|ab|是f(x)的一个周期.(ab)证明:不妨设ab于
10、是f(x2(ab)f(a(xa2b) f(a(xa2b)f(2bx)f(b(xb) f(b(xb)f(x) 2(ab)是f(x)的一个周期当ab时同理可得所以,2|ab|是f(x)的周期例题应用1、已知是偶函数,则函数的图象的对称轴是( ) A. B. C . D. 2、函数在区间上是减函数,那么实数的取值范围是( )A . B. C. D. 3、函数的图象的一条对称轴方程是( )A. B. C. D. 4、如果函数f(x)x2bxc对任意实数t都有f(2t)f(2t),那么A.f(2)f(1)f(4) B.f(1)f(2)f(4)C.f(2)f(4)f(1) D.f(4)f(2)f(1)5、
11、函数的图象关于直线对称,则的值为( )A. 1 B. C. D. 6、如果直线与均为曲线的对称轴且则的值为 。7、是定义在R上的偶函数,其图象关于直线对称,且当时,则当时,= 。8、如果直线与直线关于直线对称,则= ,= 。9、设函数定义在实数集上,则函数与的图象关于( )A. 直线对称 B.直线对称 C. 直线对称 D.直线对称10、 已知函数f(x)的定义域为N,且对任意正整数x,都有f(x)f(x1)f(x1)若f(0)2004,求f(2004)解:因为f(x)f(x1)f(x1) 所以f(x1)f(x)f(x2) 两式相加得0f(x1)f(x2)即:f(x3)f(x) f(x6)f(x
展开阅读全文