书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型函数的基本性质练习题(DOC 12页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5754940
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:12
  • 大小:534KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《函数的基本性质练习题(DOC 12页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    函数的基本性质练习题DOC 12页 函数 基本 性质 练习题 DOC 12
    资源描述:

    1、1.3函数的基本性质练习题(1)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内。1下面说法正确的选项( )A函数的单调区间可以是函数的定义域B函数的多个单调增区间的并集也是其单调增区间C具有奇偶性的函数的定义域定关于原点对称D关于原点对称的图象一定是奇函数的图象2在区间上为增函数的是( )AB C D3函数是单调函数时,的取值范围( )A B C D 4如果偶函数在具有最大值,那么该函数在有( )A最大值 B最小值 C 没有最大值D 没有最小值5函数,是( )A偶函数B奇函数C不具有奇偶函数D与有关6函数在和都是增函数,若,且那么( )A B

    2、 C D无法确定 7函数在区间是增函数,则的递增区间是( )AB CD8函数在实数集上是增函数,则( )A B CD 9定义在R上的偶函数,满足,且在区间上为递增,则( )A B C D10已知在实数集上是减函数,若,则下列正确的是( )AB CD二、填空题:请把答案填在题中横线上.11函数在R上为奇函数,且,则当, .12函数,单调递减区间为 ,最大值和最小值的情况为 .13定义在R上的函数(已知)可用的=和来表示,且为奇函数, 为偶函数,则= .14构造一个满足下面三个条件的函数实例,函数在上递减;函数具有奇偶性;函数有最小值为; .三、解答题:解答应写出文字说明、证明过程或演算步骤.15

    3、已知,求函数得单调递减区间.16判断下列函数的奇偶性; ; 。17已知,求.18函数在区间上都有意义,且在此区间上为增函数,;为减函数,.判断在的单调性,并给出证明.19. 已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。证明:;求的解析式;求在上的解析式。20已知函数,且,试问,是否存在实数,使得在上为减函数,并且在上为增函数.1.3函数的基本性质练习题(1)(答案)一、CBAAB DBAA D二、11; 12和,; 13; 14 ;三、15 解: 函数,故函数的单调递减区间为.16 解定义域关于原点对称,且,奇函数.定义域为不关于原

    4、点对称。该函数不具有奇偶性.定义域为R,关于原点对称,且,故其不具有奇偶性.定义域为R,关于原点对称, 当时,;当时,;当时,;故该函数为奇函数.17解: 已知中为奇函数,即=中,也即,得,.18解:减函数令 ,则有,即可得;同理有,即可得;从而有 *显然,从而*式,故函数为减函数.19解:是以为周期的周期函数,又是奇函数,。当时,由题意可设,由得,。是奇函数,又知在上是一次函数,可设,而,当时,从而当时,故时,。当时,有,。当时,。点评:该题属于普通函数周期性应用的题目,周期性是函数的图像特征,要将其转化成数字特征20解:.有题设当时,则 当时,则 故.函数的基本性质函数的三个基本性质:单调

    5、性,奇偶性,周期性一、单调性1、定义:对于函数,对于定义域内的自变量的任意两个值,当时,都有,那么就说函数在这个区间上是增(或减)函数。2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。)3二次函数的单调性:对函数,当时函数在对称轴的左侧单调减小,右侧单调增加;当时函数在对称轴的左侧单调增加,右侧单调减小;例1:讨论函数在(-2,2)内的单调性。4证明方法和步骤:设元:设是给定区间上任意两个值,且;作差:;变形:(如因式分解、配方等);定号:即;根据定义下结论。例2、判断函数在上的单调性并加以证

    6、明.5复合函数的单调性:复合函数在区间具有单调性的规律见下表:增 减 增 减 增 减 增 减 减 增 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。例3:函数的单调减区间是 ( )A. B. C. D.6函数的单调性的应用:判断函数的单调性;比较大小;解不等式;求最值(值域)。例4:求函数在区间上的最大值和最小值.二、奇偶性1定义:如果对于f(x)定义域内的任意一个x,都有,那么函数f(x)就叫偶函数;(等价于:)如果对于f(x)定义域内的任意一个x,都有,那么函数f(x)就叫奇函数。(等价于:)注意:当时,也可用来判断。2奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原

    7、点对称。 若函数为奇函数,且在x=0处有定义,则;3判断一个函数的奇偶性的步骤先求定义域,看是否关于原点对称; 再判断或 是否恒成立。4奇偶函数图象的性质 奇函数的图象关于原点对称。反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数。 偶函数的图象关于y轴对称。反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶函数。5常用结论:(1)奇偶性满足下列性质:奇奇=奇,偶偶=偶,奇奇=偶,偶偶=偶,奇偶=奇。(2)奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性。例4:判断函数 的奇偶性。分析:解此题的步骤(1)求函数的定义域;(2)化简函数表达式;(

    8、3)判断函数的奇偶性针对性练习:1、判断下列各函数是否具有奇偶性 、 、 、 、 、 、2、判断函数的奇偶性。 3、已知且,那么 (利用奇偶性求函数值)4、已知偶函数在上为减函数,比较,的大小。(利用奇偶性比较大小)5、已知为偶函数,求的解析式?(利用奇偶性求解析式)6、若是偶函数,讨论函数的单调区间?(利用奇偶性讨论函数的单调性) 7、已知函数是偶函数,判断的奇偶性。(利用奇偶性判断函数的奇偶性)8、定义在R上的偶函数在是单调递减,若,则的取值范围是如何?(利用奇偶性求参数的值)9、(2004.上海理)设奇函数f(x)的定义域为-5,5.若当x0,5时, f(x)的图象如右图,则不等式x的解

    9、是 . (利用图像解题)10、已知函数,若为奇函数,则_。(利用定义解题)函数的周期性与对称性函数的轴对称定理1:函数满足,则函数的图象关于直线对称.推论1:函数满足,则函数的图象关于直线对称.推论2:函数满足,则函数的图象关于直线(y轴)对称.函数的周期性定理2:函数对于定义域中的任意,都有,则是以为周期的周期函数;推论1:函数对于定义域中的任意,都有,则是以(ab)为周期的周期函数;推论2:下列条件都是以2T为周期的周期函数:1、;2、 ;3、;4、;5、;6、函数的点对称定理3:函数满足,则函数的图象关于点对称.推论1:函数满足,则函数的图象关于点对称.推论2:函数满足,则函数的图象关于原点对称.(总结:同号看周期,异号看对称)针对性练习:1、设函数的定义域为R,且满足,则图象关于_对称。2、设函数的定义域为R,且满足,则图象关于_对称。3、设函数的定义域为R,且满足,则图象关于_对称,图象关于_对称。4、已知函数是上的偶函数,若对于,都有,且当时,则的值为( )A B C D5、已知定义在R上的奇函数,满足,且在区间0,2上是增函数,则 ( )A. B.C. D.6、设是定义在上以6为周期的函数,在内单调递减,且的图像关于直线对称,则下面正确的结论是 ( ) A. B.C. D.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:函数的基本性质练习题(DOC 12页).doc
    链接地址:https://www.163wenku.com/p-5754940.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库