书签 分享 收藏 举报 版权申诉 / 22
上传文档赚钱

类型复数练习题(有答案)(DOC 22页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5754010
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:22
  • 大小:1.25MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《复数练习题(有答案)(DOC 22页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    复数练习题有答案DOC 22页 复数 练习题 答案 DOC 22
    资源描述:

    1、一、复数选择题1复数( )ABCD2复数,则的共轭复数为( )ABCD3在复平面内,复数(为虚数单位)对应的点的坐标为( )ABCD4( )A1B1CD5已知i为虚数单位,则复数的虚部是( )ABCD6已知复数满足,则复数对应的点在( )上A直线B直线C直线D直线7满足的复数的共扼复数是( )ABCD8若,则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限9若是纯虚数,则实数的值为( )AB0C1D10若,则( )AB4CD811已知是的共轭复数,则( )A4B2C0D12已知i是虚数单位,a为实数,且,则a( )A2B1C-2D-113已知(,为虚数单位),则实数的值为(

    2、 )ABCD14设,复数,若,则( )A10B9C8D715设复数(其中为虚数单位),则在复平面内对应的点所在象限为( )A第四象限B第三象限C第二象限D第一象限二、多选题16已知复数Z在复平面上对应的向量则( )Az=-1+2iB|z|=5CD17已知复数(其中为虚数单位,则以下结论正确的是( )ABCD18已知复数(为虚数单位),为的共轭复数,若复数,则下列结论正确的有( )A在复平面内对应的点位于第二象限BC的实部为D的虚部为19已知复数(i是虚数单位),是的共轭复数,则下列的结论正确的是( )ABCD20已知,为复数,下列命题不正确的是( )A若,则B若,则C若则D若,则21已知为虚数

    3、单位,则下列选项中正确的是( )A复数的模B若复数,则(即复数的共轭复数)在复平面内对应的点在第四象限C若复数是纯虚数,则或D对任意的复数,都有22已知为虚数单位,以下四个说法中正确的是( )ABC若,则复平面内对应的点位于第四象限D已知复数满足,则在复平面内对应的点的轨迹为直线23设i为虚数单位,复数,则下列命题正确的是( )A若为纯虚数,则实数a的值为2B若在复平面内对应的点在第三象限,则实数a的取值范围是 C实数是(为的共轭复数)的充要条件D若,则实数a的值为224任何一个复数(其中、,为虚数单位)都可以表示成:的形式,通常称之为复数的三角形式.法国数学家棣莫弗发现:,我们称这个结论为棣

    4、莫弗定理.根据以上信息,下列说法正确的是( )AB当,时,C当,时,D当,时,若为偶数,则复数为纯虚数25已知复数的共轭复数为,且,则下列结论正确的是( )AB虚部为CD26已知复数满足为虚数单位,复数的共轭复数为,则( )ABC复数的实部为D复数对应复平面上的点在第二象限27已知复数在复平面内对应的点位于第二象限,且 则下列结论正确的是( )AB的虚部为C的共轭复数为D28以下命题正确的是( )A是为纯虚数的必要不充分条件B满足的有且仅有C“在区间内”是“在区间内单调递增”的充分不必要条件D已知,则29(多选)表示( )A点与点之间的距离B点与点之间的距离C点到原点的距离D坐标为的向量的模3

    5、0已知复数,下列结论正确的是( )A“”是“为纯虚数”的充分不必要条件B“”是“为纯虚数”的必要不充分条件C“”是“为实数”的充要条件D“”是“为实数”的充分不必要条件【参考答案】*试卷处理标记,请不要删除一、复数选择题1C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C解析:C【分析】根据复数的除法运算法则可得结果.【详解】.故选:C2D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.解析:D【分析】先由复数的除法化简该复数,再由共轭复数的概念,即可得出结果.【详解】因为,所以其共轭复数为.故选:D.3D【分析】运用复数

    6、除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D解析:D【分析】运用复数除法的运算法则化简复数的表示,最后选出答案即可.【详解】因为,所以在复平面内,复数(为虚数单位)对应的点的坐标为.故选:D4D【分析】利用复数的除法运算即可求解.【详解】,故选:D解析:D【分析】利用复数的除法运算即可求解.【详解】,故选:D5A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是.故选:A.解析:A【分析】先由复数的除法运算化简复数,再由复数的概念,即可得出其虚部.【详解】因为,所以其虚部是

    7、.故选:A.6C【分析】利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运解析:C【分析】利用复数的乘法和除法运算求得复数z的标准形式,得到对应点的坐标,然后验证即可.【详解】解:因为,所以复数对应的点是,所以在直线上.故选:C.【点睛】本题考查复数的乘方和除法运算,复数的坐标表示,属基础题.注意:.7A【分析】根据,利用复数的除法运算化简复数,再利用共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A解析:A【分析】根据,利用复数的除法运算化简复数,再利用

    8、共扼复数的概念求解.【详解】因为,所以,复数的共扼复数是,故选:A8B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计解析:B【分析】先求解出复数,然后根据复数的几何意义判断.【详解】因为,所以,故对应的点位于复平面内第二象限.故选:B.【点睛】本题考查复数的除法运算及复数的几何意义,属于基础题. 化简计算复数的除法时,注意分子分母同乘以分母的共轭复数.9C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数

    9、,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟解析:C【分析】对复数进行化简根据实部为零,虚部不为零建立等量关系和不等关系即可得解.【详解】由题是纯虚数,为纯虚数,所以m=1.故选:C【点睛】此题考查复数的运算和概念辨析,关键在于熟练掌握复数的运算法则.10A【分析】化简复数,求共轭复数,利用复数的模的定义得【详解】因为,所以,所以 故选:A解析:A【分析】化简复数,求共轭复数,利用复数的模的定义得【详解】因为,所以,所以 故选:A11A【分析】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】,故选:A解析:A【分析

    10、】先利用复数的乘法运算法则化简,再利用共轭复数的定义求出a+bi,从而确定a,b的值,求出a+b【详解】,故选:A12B【分析】可得,即得.【详解】由,得a1.故选:B解析:B【分析】可得,即得.【详解】由,得a1.故选:B13D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】,故 则 故选:D解析:D【分析】利用复数的乘法运算及复数相等求得a,b值即可求解【详解】,故 则 故选:D14D【分析】根据复数的模的性质求模,然后可解得【详解】解:,解得.故选:D【点睛】本题考查复数的模,掌握模的性质是解题关键设复数,则,模的性质:,解析:D【分析】根据复数的模的性质求模,然后可解得

    11、【详解】解:,解得.故选:D【点睛】本题考查复数的模,掌握模的性质是解题关键设复数,则,模的性质:,15A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.解析:A【分析】根据复数的运算,先将化简,求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,其在复平面内对应的点为,位于第四象限.故选:A.二、多选题16AD【分析】因为复数Z在复平面上对应的向量,得到复数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,|z|=,故选:AD解析:AD【分析】因为复数Z在复平面上对应的向量,得到复

    12、数,再逐项判断.【详解】因为复数Z在复平面上对应的向量,所以,|z|=,故选:AD17BCD【分析】计算出,即可进行判断.【详解】,故B正确,由于复数不能比较大小,故A错误;,故C正确;,故D正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.解析:BCD【分析】计算出,即可进行判断.【详解】,故B正确,由于复数不能比较大小,故A错误;,故C正确;,故D正确.故选:BCD.【点睛】本题考查复数的相关计算,属于基础题.18ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在

    13、第二象限,所以选项正确解析:ABC【分析】对选项求出,再判断得解;对选项,求出再判断得解;对选项复数的实部为,判断得解;对选项,的虚部为,判断得解.【详解】对选项由题得.所以复数对应的点为,在第二象限,所以选项正确;对选项,因为,所以选项正确;对选项复数的实部为,所以选项正确;对选项,的虚部为,所以选项错误.故选:ABC【点睛】本题主要考查复数的运算和共轭复数,考查复数的模的计算,考查复数的几何意义,考查复数的实部和虚部的概念,意在考查学生对这些知识的理解掌握水平.19AC【分析】根据复数的运算进行化简判断即可.【详解】解:所以,故A正确,故B错误,故C正确,虚数不能比较大小,故D错误,故选:

    14、AC.【点睛】本题主要考查复数的有关概念解析:AC【分析】根据复数的运算进行化简判断即可.【详解】解:所以,故A正确,故B错误,故C正确,虚数不能比较大小,故D错误,故选:AC.【点睛】本题主要考查复数的有关概念和运算,结合复数的运算法则进行判断是解决本题的关键属于中档题20BCD【分析】根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小解析:BCD【分析】根据两个复数之间不能比较大小,得到C、D两项是错误的,根据复数的定义和复数模的概念,可以断定A项正确,B项错误,从

    15、而得到答案.【详解】因为两个复数之间只有等与不等,不能比较大小,所以C、D两项都不正确;当两个复数的模相等时,复数不一定相等,比如,但是,所以B项是错误的;因为当两个复数相等时,模一定相等,所以A项正确;故选:BCD.【点睛】该题考查的是有关复数的问题,涉及到的知识点有两个复数之间的关系,复数模的概念,属于基础题目.21AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;举例说明错误【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四解析:AB【分析】求解复数的模判断;由共轭复数的概念判断;由实部为0且虚部不为0求得值判断;

    16、举例说明错误【详解】解:对于,复数的模,故正确;对于,若复数,则,在复平面内对应的点的坐标为,在第四象限,故正确;对于,若复数是纯虚数,则,解得,故错误;对于,当时,故错误故选:【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,属于基础题22AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解】,则A正确;虚数不能比较大小,则B错误;,则,解析:AD【分析】根据复数的运算判断A;由虚数不能比较大小判断B;由复数的运算以及共轭复数的定义判断C;由模长公式化简,得出,从而判断D.【详解

    17、】,则A正确;虚数不能比较大小,则B错误;,则,其对应复平面的点的坐标为,位于第三象限,则C错误;令,解得则在复平面内对应的点的轨迹为直线,D正确;故选:AD【点睛】本题主要考查了判断复数对应的点所在的象限,与复数模相关的轨迹(图形)问题,属于中档题.23ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】选项A:为纯虚数,有可得,故正确选项B解析:ACD【分析】首先应用复数的乘法得,再根据纯虚数概念、复数所在象限,以及与共轭复数或另一个复数相等,求参数的值或范围,进而可确定选项的正误【详解】选项A:

    18、为纯虚数,有可得,故正确选项B:在复平面内对应的点在第三象限,有解得,故错误选项C:时,;时,即,它们互为充要条件,故正确选项D:时,有,即,故正确故选:ACD【点睛】本题考查了复数的运算及分类和概念,应用复数乘法运算求得复数,再根据复数的概念及性质、相等关系等确定参数的值或范围24AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.【详解】对于A选项,则,可得解析:AC【分析】利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选

    19、项的正误;计算出,可判断D选项的正误.【详解】对于A选项,则,可得,A选项正确;对于B选项,当,时,B选项错误;对于C选项,当,时,则,C选项正确;对于D选项,取,则为偶数,则不是纯虚数,D选项错误.故选:AC.【点睛】本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.25ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假【详解】由可得,所以,虚部为;因为,所以,故选:ACD【解析:ACD【分析】先利用题目条件可求得,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各

    20、选项的真假【详解】由可得,所以,虚部为;因为,所以,故选:ACD【点睛】本题主要考查复数的有关概念的理解和运用,复数的模的计算公式的应用,复数的四则运算法则的应用,考查学生的数学运算能力,属于基础题26BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A错误; ,故B正确;复数的实部为 ,故C错误;复数对应复平面上的点在第二象限解析:BD【分析】因为复数满足,利用复数的除法运算化简为,再逐项验证判断.【详解】因为复数满足,所以所以,故A错误; ,故B正确;复数的实部为 ,故C错误;复数对应复平面上的点在第二象限,故D正确.故选:BD【点睛】本

    21、题主要考查复数的概念,代数运算以及几何意义,还考查分析运算求解的能力,属于基础题.27AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限 选项A: 选项B: 的虚部是 选项C:解析:AB【分析】利用复数的模长运算及在复平面内对应的点位于第二象限求出 ,再验算每个选项得解.【详解】解:,且,复数在复平面内对应的点位于第二象限 选项A: 选项B: 的虚部是 选项C: 的共轭复数为 选项D: 故选:AB【点睛】本题考查复数的四则运算及共轭复数,考查运算求解能力.求解与复数概念相关问题的技巧:复数的分类、复数的

    22、相等、复数的模及共轭复数的概念都与复数的实部、虚部有关,所以解答与复数相关概念有关的问题时,需把所给复数化为代数形式,即的形式,再根据题意求解28AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A选项的正误;解方程可判断B选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C选项的正误;利用基本初等函数的导数公式解析:AC【分析】利用纯虚数的概念以及必要不充分条件的定义可判断A选项的正误;解方程可判断B选项的正误;利用导数与函数单调性的关系结合充分不必要条件的定义可判断C选项的正误;利用基本初等函数的导数公式可判断D选项的正误.综合可得出结论.【详解】对于A选项,若复

    23、数为纯虚数,则且,所以,是为纯虚数的必要不充分条件,A选项正确;对于B选项,解方程得,B选项错误;对于C选项,当时,若,则函数在区间内单调递增,即“在区间内”“在区间内单调递增”.反之,取,当时,此时,函数在区间上单调递增,即“在区间内”“在区间内单调递增”.所以,“在区间内”是“在区间内单调递增”的充分不必要条件.C选项正确;对于D选项,D选项错误.故选:AC.【点睛】本题考查命题真假的判断,涉及充分条件与必要条件的判断、实系数方程的根以及导数的计算,考查推理能力与计算能力,属于中等题.29ACD【分析】由复数的模的意义可判断选项A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数

    24、的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B解析:ACD【分析】由复数的模的意义可判断选项A,B;整理原式等于,也等于,即可判断选项C,D【详解】由复数的几何意义,知复数,分别对应复平面内的点与点,所以表示点与点之间的距离,故A说法正确,B说法错误;,可表示点到原点的距离,故C说法正确;,可表示表示点到原点的距离,即坐标为的向量的模,故D说法正确,故选:ACD【点睛】本题考查复数的几何意义,考查复数的模30BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分解析:BC【分析】设,可得出,利用复数的运算、复数的概念结合充分条件、必要条件的定义进行判断,从而可得出结论.【详解】设,则,则,若,则,若,则不为纯虚数,所以,“”是“为纯虚数”必要不充分条件;若,即,可得,则为实数,“”是“为实数”的充要条件;,为虚数或实数,“”是“为实数”的必要不充分条件.故选:BC.【点睛】本题考查充分条件、必要条件的判断,同时也考查了共轭复数、复数的基本概念的应用,考查推理能力,属于基础题.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:复数练习题(有答案)(DOC 22页).doc
    链接地址:https://www.163wenku.com/p-5754010.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库