勾股定理提高练习题精编(DOC 11页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《勾股定理提高练习题精编(DOC 11页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理提高练习题精编DOC 11页 勾股定理 提高 练习题 精编 DOC 11
- 资源描述:
-
1、勾股定理练习(根据对称求最小值)基本模型:已知点A、B为直线 m 同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。1、已知边长为4的正三角形ABC上一点E,AE=1,ADBC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。2、.已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。 3、如图,已知直线 ab,且a与b之间的距离为4,点A到直线 a的距离为2,点B到直线b的距离为3,AB=2试在直线a上找一点M,在直线b上找一点N,满足MNa且AM+MN+NB的长度和最短,则此时AM+NB=()A6 B8 C1
2、0 D12 4、已知AB=20,DAAB于点A,CBAB于点B,DA=10,CB=5(1)在AB上找一点E,使EC=ED,并求出EA的长;(2)在AB上找一点F,使FC+FD最小,并求出这个最小值5、如图,在梯形ABCD 中,C=45 ,BAD=B=90 ,AD=3 ,CD=2 , M为 BC上一动点,则AMD 周长的最小值为 6、如图,等边ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AB边上一点,则EM+BM的最小值为 7、如图AOB = 45,P是AOB内一点,PO = 10,Q、R分别是OA、OB上的动点,求PQR周长的最小值8如图所示,正方形ABCD的面积为12,AB
3、E是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PDPE的和最小,则这个最小值为( )A2 B2 C3 D9、在边长为2 cm的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则PBQ周长的最小值为_cm10、在长方形ABCD中,AB=4,BC=8,E为CD边的中点,若P、Q是BC边上的两动点,且PQ=2,当四边形APQE的周长最小时,求BP的长.几何体展开求最短路径1、如图,是一个三级台阶,它的每一级的长、宽、高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只昆虫想到B点去吃可口的食物,则昆虫沿着台阶爬到B点的最短路程
4、是多少dm? 2、如图:一圆柱体的底面周长为20cm,高为4cm,是上底面的直径一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路程 3、如图,一个高18m,周长5m的圆柱形水塔,现制造一个螺旋形登梯,为了减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿一张白纸动手操作,你一定会发现其中的奥妙) 4、如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少? 5、如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容
5、器上沿0.3m与蚊子相对的点A处,求壁虎捕捉蚊子的最短距离。 折叠问题1、如图所示,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长。 2、如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B处,点A落在点A处;(1)求证:BE=BF;(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间的一种关系,并给予证明 3、如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将ABC折叠,使点B与点A重合,折痕为DE,则CD= 。4、如图,折叠长方形ABCD的一边AD,点D落在BC边的D处,AE是折痕,已知CD=6cm,CD=2cm,则
6、AD的长为 . 5、如图,在RtABC中,ABC=90,C=60,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C,折痕为BE,则EC的长度是()A、5 B、55 C、105 D、5 +6、如图,把矩形ABCD沿直线BD向上折叠,使点C落在C的位置上,已知AB=3,BC=7,求重合部分EBD的面积。弦图有关问题1、如图,直线 l上有三个正方形 a、b、c ,若 a、c的面积分别为5和11,则b 的面积为()A、4 B、6 C、16 D、552、2002年8月在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的勾股圆方图,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方
7、形(如图所示)如果大正方形的面积是13,小正方形的面积是1,直角三角形的较短直角边为 a,较长直角边为 b,那么(a+b)2 的值为( )A、13 B、19 C、25 D、1693、如图,直角三角形三边上的半圆的面积依次从小到大记作S1 、S 2、S 3,则S1 、S 2、S3 之间的关系是( )A、S1+S 2S3 B、S1 +S 2S3 C、S1 +S2=S3 D、S12 +S22 =S32 4、如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成,若图中大小正方形的面积分别为52和4,则直角三角形的两条直角边的长分别为 。5、已知:如图,以RtABC的三边
8、为斜边分别向外作等腰直角三角形若斜边AB3,则图中阴影部分的面积为 6、如图,RtABC 的周长为(5+3 ) cm,以 AB、 AC为边向外作正方形ABPQ 和正方形ACMN 若这两个正方形的面积之和为25cm2 ,则 ABC的面积是 cm2. 7、在直线 l上依次摆放着七个正方形(如图)已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1S2S3S4= 8、我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形M
展开阅读全文