书签 分享 收藏 举报 版权申诉 / 10
上传文档赚钱

类型导数综合练习题压轴(含详细答案)精华(DOC 10页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5753159
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:10
  • 大小:1.34MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《导数综合练习题压轴(含详细答案)精华(DOC 10页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    导数综合练习题压轴含详细答案精华DOC 10页 导数 综合 练习题 压轴 详细 答案 精华 DOC 10
    资源描述:

    1、精品文档导数练习题1(本题满分12分)已知函数的图象如图所示(I)求的值;(II)若函数在处的切线方程为,求函数的解析式;(III)在(II)的条件下,函数与的图象有三个不同的交点,求的取值范围2(本小题满分12分)已知函数(I)求函数的单调区间;(II)函数的图象的在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围3(本小题满分14分)已知函数的图象经过坐标原点,且在处取得极大值(I)求实数的取值范围;(II)若方程恰好有两个不同的根,求的解析式;(III)对于(II)中的函数,对任意,求证:4(本小题满分12分)已知常数,为自然对数的底数,函数,(I)写出的单调递增区间,

    2、并证明;(II)讨论函数在区间上零点的个数5(本小题满分14分)已知函数(I)当时,求函数的最大值;(II)若函数没有零点,求实数的取值范围;6(本小题满分12分) 已知是函数的一个极值点()(I)求实数的值;(II)求函数在的最大值和最小值7(本小题满分14分)已知函数 (I)当a=18时,求函数的单调区间; (II)求函数在区间上的最小值8(本小题满分12分)已知函数在上不具有单调性(I)求实数的取值范围;(II)若是的导函数,设,试证明:对任意两个不相等正数,不等式恒成立9(本小题满分12分)已知函数 (I)讨论函数的单调性; (II)证明:若10(本小题满分14分)已知函数(I)若函数

    3、在区间上都是单调函数且它们的单调性相同,求实数的取值范围;(II)若,设,求证:当时,不等式成立11(本小题满分12分)设曲线:(),表示导函数(I)求函数的极值;(II)对于曲线上的不同两点,求证:存在唯一的,使直线的斜率等于12(本小题满分14分)定义,(I)令函数,写出函数的定义域;(II)令函数的图象为曲线C,若存在实数b使得曲线C在处有斜率为8的切线,求实数的取值范围;(III)当且时,求证导数练习题(B)答案1(本题满分12分)已知函数的图象如图所示(I)求的值;(II)若函数在处的切线方程为,求函数的解析式;(III)在(II)的条件下,函数与的图象有三个不同的交点,求的取值范围

    4、解:函数的导函数为 (2分)(I)由图可知 函数的图象过点(0,3),且得 (4分)(II)依题意 且 解得 所以 (8分)(III)可转化为:有三个不等实根,即:与轴有三个交点; ,+0-0+增极大值减极小值增 (10分)当且仅当时,有三个交点,故而,为所求 (12分)2(本小题满分12分)已知函数(I)求函数的单调区间;(II)函数的图象的在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围解:(I)(2分)当当当a=1时,不是单调函数(5分) (II)(6分)(8分)(10分)(12分)3(本小题满分14分)已知函数的图象经过坐标原点,且在处取得极大值(I)求实数的取值范

    5、围;(II)若方程恰好有两个不同的根,求的解析式;(III)对于(II)中的函数,对任意,求证:解:(I)由,因为当时取得极大值,所以,所以;(4分)(II)由下表:+0-0-递增极大值递减极小值递增 依题意得:,解得:所以函数的解析式是: (10分)(III)对任意的实数都有在区间-2,2有:函数上的最大值与最小值的差等于81,所以(14分)4(本小题满分12分)已知常数,为自然对数的底数,函数,(I)写出的单调递增区间,并证明;(II)讨论函数在区间上零点的个数解:(I),得的单调递增区间是, (2分),即 (4分)(II),由,得,列表-0+单调递减极小值单调递增当时,函数取极小值,无极

    6、大值 (6分)由(I), (8分)(i)当,即时,函数在区间不存在零点(ii)当,即时 若,即时,函数在区间不存在零点 若,即时,函数在区间存在一个零点; 若,即时,函数在区间存在两个零点;综上所述,在上,我们有结论:当时,函数无零点;当 时,函数有一个零点;当时,函数有两个零点 (12分)5(本小题满分14分)已知函数(I)当时,求函数的最大值;(II)若函数没有零点,求实数的取值范围;解:(I)当时,定义域为(1,+),令, (2分)当,当,内是增函数,上是减函数当时,取最大值 (4分)(II)当,函数图象与函数图象有公共点,函数有零点,不合要求; (8分)当, (6分)令,内是增函数,上

    7、是减函数,的最大值是, 函数没有零点,因此,若函数没有零点,则实数的取值范围(10分)6(本小题满分12分) 已知是函数的一个极值点()(I)求实数的值;(II)求函数在的最大值和最小值解:(I)由可得(4分)是函数的一个极值点,解得 (6分)(II)由,得在递增,在递增,由,得在在递减是在的最小值; (8分), 在的最大值是 (12分)7(本小题满分14分)已知函数 (I)当a=18时,求函数的单调区间; (II)求函数在区间上的最小值解:(),2分由得,解得或注意到,所以函数的单调递增区间是(4,+)由得,解得-24,注意到,所以函数的单调递减区间是.综上所述,函数的单调增区间是(4,+)

    8、,单调减区间是6分 ()在时,所以,设当时,有=16+42,此时,所以,在上单调递增,所以8分当时,=,令,即,解得或;令,即,解得.若,即时,在区间单调递减,所以.若,即时间,在区间上单调递减,在区间上单调递增,所以.若,即2时,在区间单调递增,所以综上所述,当2时,;当时,;当时,14分8(本小题满分12分)已知函数在上不具有单调性(I)求实数的取值范围;(II)若是的导函数,设,试证明:对任意两个不相等正数,不等式恒成立解:(I), (2分)在上不具有单调性,在上有正也有负也有0,即二次函数在上有零点 (4分)是对称轴是,开口向上的抛物线,的实数的取值范围 (6分)(II)由(I),方法

    9、1:,(8分)设,在是减函数,在增函数,当时,取最小值从而,函数是增函数,是两个不相等正数,不妨设,则, ,即 (12分)方法2: 、是曲线上任意两相异点, (8分)设,令,由,得由得在上是减函数,在上是增函数,在处取极小值,所以即 (12分)9(本小题满分12分)已知函数 (I)讨论函数的单调性; (II)证明:若(1)的定义域为, 2分(i)若,则 故在单调增加(ii)若 单调减少,在(0,a-1), 单调增加(iii)若 单调增加(II)考虑函数 由 由于,从而当时有 故,当时,有10(本小题满分14分)已知函数(I)若函数在区间上都是单调函数且它们的单调性相同,求实数的取值范围;(II

    10、)若,设,求证:当时,不等式成立解:(I), (2分)函数在区间上都是单调函数且它们的单调性相同,当时,恒成立, (4分)即恒成立, 在时恒成立,或在时恒成立,或 (6分)(II),定义域是,即在是增函数,在实际减函数,在是增函数当时,取极大值,当时,取极小值, (8分), (10分)设,则,在是增函数,在也是增函数 (12分),即,而,当时,不等式成立 (14分)11(本小题满分12分)设曲线:(),表示导函数(I)求函数的极值;(II)对于曲线上的不同两点,求证:存在唯一的,使直线的斜率等于解:(I),得当变化时,与变化情况如下表:0单调递增极大值单调递减当时,取得极大值,没有极小值; (

    11、4分)(II)(方法1),即,设,是的增函数,;,是的增函数,函数在内有零点, (10分)又,函数在是增函数,函数在内有唯一零点,命题成立(12分)(方法2),即,且唯一设,则,再设,在是增函数,同理方程在有解 (10分)一次函数在是增函数方程在有唯一解,命题成立(12分)注:仅用函数单调性说明,没有去证明曲线不存在拐点,不给分12(本小题满分14分)定义,(I)令函数,写出函数的定义域;(II)令函数的图象为曲线C,若存在实数b使得曲线C在处有斜率为8的切线,求实数的取值范围;(III)当且时,求证解:(I),即 (2分)得函数的定义域是, (4分)(II)设曲线处有斜率为8的切线,又由题设存在实数b使得 有解, (6分)由得代入得, 有解, (8分)方法1:,因为,所以,当时,存在实数,使得曲线C在处有斜率为8的切线(10分)方法2:得, (10分)方法3:是的补集,即 (10分)(III)令又令 ,单调递减. (12)分单调递减, , (14分) 欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求10欢迎下载。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:导数综合练习题压轴(含详细答案)精华(DOC 10页).doc
    链接地址:https://www.163wenku.com/p-5753159.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库