书签 分享 收藏 举报 版权申诉 / 5
上传文档赚钱

类型数学归纳法练习题(DOC 5页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5752112
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:5
  • 大小:45.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《数学归纳法练习题(DOC 5页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    数学归纳法练习题DOC 5页 数学 归纳法 练习题 DOC
    资源描述:

    1、2.3数学归纳法第1课时数学归纳法1用数学归纳法证明“2nn21对于nn0的自然数n都成立”时,第一步证明中的起始值n0应取()A2 B3 C5 D6解析当n取1、2、3、4时2nn21不成立,当n5时,253252126,第一个能使2nn21的n值为5,故选C.答案C2用数学归纳法证明等式123(n3)(nN),验证n1时,左边应取的项是()A1 B12 C123 D1234解析等式左边的数是从1加到n3.当n1时,n34,故此时左边的数为从1加到4.答案D3设f(n)1(nN),那么f(n1)f(n)等于()A. B.C. D.解析f(n)1,f(n1)1,f(n1)f(n).答案D4用数

    2、学归纳法证明关于n的恒等式,当nk时,表达式为1427k(3k1)k(k1)2,则当nk1时,表达式为_答案1427k(3k1)(k1)(3k4)(k1)(k2)25记凸k边形的内角和为f(k),则凸k1边形的内角和f(k1)f(k)_.解析由凸k边形变为凸k1边形时,增加了一个三角形图形,故f(k1)f(k).答案6用数学归纳法证明:.证明(1)当n1时,左边,右边,等式成立(2)假设当nk(kN*)时,等式成立,即.则当nk1时,.即当nk1时,等式成立根据(1)(2)可知,对一切nN*,等式成立7若命题A(n)(nN*)在nk(kN*)时命题成立,则有nk1时命题成立现知命题对nn0(n

    3、0N*)时命题成立,则有()A命题对所有正整数都成立B命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D以上说法都不正确解析由已知得nn0(n0N*)时命题成立,则有nn01时命题成立;在nn01时命题成立的前提下,又可推得n(n01)1时命题也成立,依此类推,可知选C.答案C8用数学归纳法证明(n1)(n2)(n3)(nn)2n13(2n1)(nN*),从nk到nk1,左边增加的代数式为()A2k1 B2(2k1)C. D.解析nk时,左边(k1)(k2)(2k);nk1时,左边(k2)(k3)(2k2)2(

    4、k1)(k2)(2k)(2k1),故选B.答案B9分析下述证明242nn2n1(nN)的过程中的错误:证明假设当nk(kN)时等式成立,即242kk2k1,那么242k2(k1)k2k12(k1)(k1)2(k1)1,即当nk1时等式也成立因此对于任何nN等式都成立_.答案缺少步骤归纳奠基,实际上当n1时等式不成立10用数学归纳法证明(11)(22)(33)(nn)2n1(n2n)时,从nk到nk1左边需要添加的因式是_解析当nk时,左端为:(11)(22)(kk),当nk1时,左端为:(11)(22)(kk)(k1k1),由k到k1需添加的因式为:(2k2)答案2k211用数学归纳法证明1222n2(nN*)证明(1)当n1时,左边121,右边1,等式成立(2)假设当nk(kN*)时等式成立,即1222k2那么,1222k2(k1)2(k1)2,即当nk1时等式也成立根据(1)和(2),可知等式对任何nN*都成立12(创新拓展)已知正数数列an(nN*)中,前n项和为Sn,且2Snan,用数学归纳法证明:an.证明(1)当n1时a1S1,a1(an0),a11,又1,n1时,结论成立(2)假设nk(kN*)时,结论成立,即ak.当nk1时,ak1Sk1Ska2ak110,解得ak1(an0),nk1时,结论成立由(1)(2)可知,对nN*都有an.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:数学归纳法练习题(DOC 5页).doc
    链接地址:https://www.163wenku.com/p-5752112.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库