立体几何大题练习文科(DOC 13页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《立体几何大题练习文科(DOC 13页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 立体几何大题练习文科DOC 13页 立体几何 练习 文科 DOC 13
- 资源描述:
-
1、立体几何大题练习(文科):1如图,在四棱锥SABCD中,底面ABCD是梯形,ABDC,ABC=90,AD=SD,BC=CD=,侧面SAD底面ABCD(1)求证:平面SBD平面SAD;(2)若SDA=120,且三棱锥SBCD的体积为,求侧面SAB的面积【分析】(1)由梯形ABCD,设BC=a,则CD=a,AB=2a,运用勾股定理和余弦定理,可得AD,由线面垂直的判定定理可得BD平面SAD,运用面面垂直的判定定理即可得证;(2)运用面面垂直的性质定理,以及三棱锥的体积公式,求得BC=1,运用勾股定理和余弦定理,可得SA,SB,运用三角形的面积公式,即可得到所求值【解答】(1)证明:在梯形ABCD中
2、,ABDC,ABC=90,BC=CD=,设BC=a,则CD=a,AB=2a,在直角三角形BCD中,BCD=90,可得BD=a,CBD=45,ABD=45,由余弦定理可得AD=a,则BDAD,由面SAD底面ABCD可得BD平面SAD,又BD平面SBD,可得平面SBD平面SAD;(2)解:SDA=120,且三棱锥SBCD的体积为,由AD=SD=a,在SAD中,可得SA=2SDsin60=a,SAD的边AD上的高SH=SDsin60=a,由SH平面BCD,可得aa2=,解得a=1,由BD平面SAD,可得BDSD,SB=2a,又AB=2a,在等腰三角形SBA中,边SA上的高为=a,则SAB的面积为SA
3、a=a=【点评】本题考查面面垂直的判定定理的运用,注意运用转化思想,考查三棱锥的体积公式的运用,以及推理能力和空间想象能力,属于中档题2如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EFAD求证:(1)EF平面ABC;(2)ADAC【分析】(1)利用ABEF及线面平行判定定理可得结论;(2)通过取线段CD上点G,连结FG、EG使得FGBC,则EGAC,利用线面垂直的性质定理可知FGAD,结合线面垂直的判定定理可知AD平面EFG,从而可得结论【解答】证明:(1)因为ABAD,EFAD,且A、B、E、F四点共面,所以ABEF
4、,又因为EF平面ABC,AB平面ABC,所以由线面平行判定定理可知:EF平面ABC;(2)在线段CD上取点G,连结FG、EG使得FGBC,则EGAC,因为BCBD,FGBC,所以FGBD,又因为平面ABD平面BCD,所以FG平面ABD,所以FGAD,又因为ADEF,且EFFG=F,所以AD平面EFG,所以ADEG,故ADAC【点评】本题考查线面平行及线线垂直的判定,考查空间想象能力,考查转化思想,涉及线面平行判定定理,线面垂直的性质及判定定理,注意解题方法的积累,属于中档题3如图,在三棱柱ABCA1B1C1中,CC1底面ABC,ACCB,点M和N分别是B1C1和BC的中点(1)求证:MB平面A
5、C1N;(2)求证:ACMB【分析】(1)证明MC1NB为平行四边形,所以C1NMB,即可证明MB平面AC1N;(2)证明AC平面BCC1B1,即可证明ACMB【解答】证明:(1)证明:在三棱柱ABCA1B1C1中,因为点M,N分别是B1C1,BC的中点,所以C1MBN,C1M=BN所以MC1NB为平行四边形所以C1NMB因为C1N平面AC1N,MB平面AC1N,所以MB平面AC1N;(2)因为CC1底面ABC,所以ACCC1因为ACBC,BCCC1=C,所以AC平面BCC1B1因为MB平面BCC1B1,所以ACMB【点评】本题考查线面平行的判定,考查线面垂直的判定与性质,考查学生分析解决问题
6、的能力,属于中档题4如图,在四棱锥PABCD中,底面ABCD为直角梯形,AD|BC,PD底面ABCD,ADC=90,AD=2BC,Q为AD的中点,M为棱PC的中点()证明:PA平面BMQ;()已知PD=DC=AD=2,求点P到平面BMQ的距离【分析】(1)连结AC交BQ于N,连结MN,只要证明MNPA,利用线面平行的判定定理可证;(2)由(1)可知,PA平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离【解答】解:(1)连结AC交BQ于N,连结MN,因为ADC=90,Q为AD的中点,所以N为AC的中点(2分)当M为PC的中点,即PM=MC时,MN为PAC的中位线,故MNPA,又M
7、N平面BMQ,所以PA平面BMQ(5分)(2)由(1)可知,PA平面BMQ,所以点P到平面BMQ的距离等于点A到平面BMQ的距离,所以VPBMQ=VABMQ=VMABQ,取CD的中点K,连结MK,所以MKPD,(7分)又PD底面ABCD,所以MK底面ABCD又,PD=CD=2,所以AQ=1,BQ=2,(10分)所以VPBMQ=VABMQ=VMABQ=.,(11分)则点P到平面BMQ的距离d=(12分)【点评】本题考查了线面平行的判定定理的运用以及利用三棱锥的体积求点到直线的距离5如图,在直三棱柱ABCA1B1C1中,BCAC,D,E分别是AB,AC的中点(1)求证:B1C1平面A1DE;(2)
8、求证:平面A1DE平面ACC1A1【分析】(1)证明B1C1DE,即可证明B1C1平面A1DE;(2)证明DE平面ACC1A1,即可证明平面A1DE平面ACC1A1【解答】证明:(1)因为D,E分别是AB,AC的中点,所以DEBC,(2分)又因为在三棱柱ABCA1B1C1中,B1C1BC,所以B1C1DE(4分)又B1C1平面A1DE,DE平面A1DE,所以B1C1平面A1DE(6分)(2)在直三棱柱ABCA1B1C1中,CC1底面ABC,又DE底面ABC,所以CC1DE(8分)又BCAC,DEBC,所以DEAC,(10分)又CC1,AC平面ACC1A1,且CC1AC=C,所以DE平面ACC1
展开阅读全文