解析几何练习题与答案(DOC 29页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《解析几何练习题与答案(DOC 29页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析几何练习题与答案DOC 29页 解析几何 练习题 答案 DOC 29
- 资源描述:
-
1、解析几何一、选择题1已知两点A(3,),B(,1),则直线AB的斜率是()A.BC.D解析:斜率k,故选D.答案:D2已知直线l:axy2a0在x轴和y轴上的截距相等,则a的值是()A1B1C2或1D2或1解析:当a0时,y2不合题意a0,x0时,y2a.y0时,x,则a2,得a1或a2.故选D.答案:D3两直线3xy30与6xmy10平行,则它们之间的距离为()A4BC.D解析:把3xy30转化为6x2y60,由两直线平行知m2,则d.故选D.答案:D4(2014皖南八校联考)直线2xy10关于直线x1对称的直线方程是()Ax2y10B2xy10C2xy50Dx2y50解析:由题意可知,直线
2、2xy10与直线x1的交点为(1,3),直线2xy10的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2xy10的斜率为2,故所求直线的斜率为2,所以所求直线的方程是y32(x1),即2xy50.故选C.答案:C5若直线l:ykx与直线2x3y60的交点位于第一象限,则直线l的倾斜角的取值围是()A.BC.D解析:由题意,可作直线2x3y60的图象,如图所示,则直线与x轴、y轴交点分别为A(3,0),B(0,2),又直线l过定点(0,),由题知直线l与线段AB相交(交点不含端点),从图中可以看出,直线l的倾斜角的取值围为.故选B.答案:B6(2014一模)过点A(2,3)且垂直于
3、直线2xy50的直线方程为()Ax2y40B2xy70Cx2y30Dx2y50解析:直线2xy50的斜率为k2,所求直线的斜率为k,方程为y3(x2),即x2y40.答案:A二、填空题7过点(2,1)且在x轴上截距与在y轴上截距之和为6的直线方程为_解析:由题意知截距均不为零设直线方程为1,由解得或.故所求直线方程为xy30或x2y40.答案:xy30或x2y408(2014质检)若过点A(2,m),B(m,4)的直线与直线2xy20平行,则m的值为_解析:过点A,B的直线平行于直线2xy20,kAB2,解得m8.答案:89若过点P(1a,1a)与Q(3,2a)的直线的倾斜角为钝角,则实数a的
4、取值围是_解析:由直线PQ的倾斜角为钝角,可知其斜率k0,即0,化简得0,2a1.答案:(2,1)10已知kR,则直线kx(1k)y30经过的定点坐标是_解析:令k0,得y30,令k1,得x30.解方程组得所以定点坐标为(3,3)答案:(3,3)三、解答题11已知两直线l1:xysin 10和l2:2xsin y10,试求的值,使(1)l1l2;(2)l1l2.解:(1)法一当sin 0时,直线l1的斜率不存在,l2的斜率为0,显然l1不平行于l2.当sin 0时,k1,k22sin .要使l1l2,需2sin ,即sin ,k,kZ.故当k,kZ时,l1l2.法二由l1l2,得sin ,k,
5、kZ.故当k,kZ时,l1l2.(2)l1l2,2sin sin 0,即sin 0.k,kZ.故当k,kZ时,l1l2.12设直线l1:yk1x1,l2:yk2x1,其中实数k1,k2满足k1k220.(1)证明l1与l2相交;(2)证明l1与l2的交点在椭圆2x2y21上证明:(1)假设l1与l2不相交,则l1l2即k1k2,代入k1k220,得k20,这与k1为实数的事实相矛盾,从而k1k2,即l1与l2相交(2)法一由方程组解得交点P的坐标为,而2x2y22221.即P(x,y)在椭圆2x2y21上即l1与l2的交点在椭圆2x2y21上法二交点P的坐标(x,y)满足故知x0.从而代入k1
6、k220,得20,整理后,得2x2y21.所以交点P在椭圆2x2y21上第八篇第2节 一、选择题1圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2(y2)21Bx2(y2)21C(x1)2(y3)21Dx2(y3)21解析:由题意,设圆心(0,t),则1,得t2,所以圆的方程为x2(y2)21,故选A.答案:A2(2014模拟)动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为()Ax2y232Bx2y216C(x1)2y216Dx2(y1)216解析:设P(x,y),则由题意可得2,化简整理得x2y216,故选B.答案:B3(2012年高考卷)已知
7、圆C:x2y24x0,l是过点P(3,0)的直线,则()Al与C相交Bl与C相切Cl与C相离D以上三个选项均有可能解析:x2y24x0是以(2,0)为圆心,以2为半径的圆,而点P(3,0)到圆心的距离为d10,对mR,直线l与圆C总有两个不同交点法二直线l:mxy1恒过定点(0,1),且点(0,1)在圆C:x2(y2)25部,对mR,直线l与圆C总有两个不同交点(2)解:设A(x1,y1),B(x2,y2),M(x,y),由方程(m21)x22mx40,得x1x2,x.当x0时m0,点M(0,1),当x0时,由mxy10,得m,代入x,得x ,化简得x22.经验证(0,1)也符合,弦AB的中点
8、M的轨迹方程为x22.12已知圆C:x2y28y120,直线l:axy2a0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且|AB|2时,求直线l的方程解:将圆C的方程x2y28y120配方得标准方程为x2(y4)24,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有2.解得a.(2)过圆心C作CDAB,则根据题意和圆的性质,得解得a7,或a1.故所求直线方程为7xy140或xy20.第八篇第3节 一、选择题1设P是椭圆1上的点若F1、F2是椭圆的两个焦点,则|PF1|PF2|等于()A4B5C8D10解析:由方程知a5,根据椭圆定义,|PF1
9、|PF2|2a10.故选D.答案:D2(2014二模)P为椭圆1上一点,F1,F2为该椭圆的两个焦点,若F1PF260,则等于()A3BC2D2解析:由椭圆方程知a2,b,c1,|PF1|PF2|4.|cos 6042.答案:D3(2012年高考卷)椭圆1(ab0)的左、右顶点分别是A、B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.BC.D2解析:本题考查椭圆的性质与等比数列的综合运用由椭圆的性质可知|AF1|ac,|F1F2|2c,|F1B|ac,又|AF1|,|F1F2|,|F1B|成等比数列,故(ac)(ac)(2c)2,可得
10、e.故应选B.答案:B4(2013年高考卷)已知椭圆C:1(ab0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|10,|BF|8,cosABF,则C的离心率为()A.BC.D解析:|AF|2|AB|2|BF|22|AB|BF|cosABF10064210836,则|AF|6,AFB90,半焦距c|FO|AB|5,设椭圆右焦点F2,连结AF2,由对称性知|AF2|FB|8,2a|AF2|AF|6814,即a7,则e.故选B.答案:B5已知椭圆E:1,对于任意实数k,下列直线被椭圆E截得的弦长与l:ykx1被椭圆E截得的弦长不可能相等的是()Akxyk0Bkxy10C
11、kxyk0Dkxy20解析:取k1时,l:yx1.选项A中直线:yx1与l关于x轴对称,截得弦长相等选项B中直线:yx1与l关于原点对称,所截弦长相等选项C中直线:yx1与l关于y轴对称,截得弦长相等排除选项A、B、C,故选D.答案:D6(2014省实验中学第二次诊断)已知椭圆1(ab0)的左、右焦点分别为F1(c,0),F2(c,0),若椭圆上存在点P,使,则该椭圆的离心率的取值围为()A(0,1)BC.D(1,1)解析:由题意知点P不在x轴上,在PF1F2中,由正弦定理得,所以由可得,即e,所以|PF1|e|PF2|.由椭圆定义可知|PF1|PF2|2a,所以e|PF2|PF2|2a,解得
展开阅读全文