椭圆练习题(经典归纳)(DOC 8页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《椭圆练习题(经典归纳)(DOC 8页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆练习题经典归纳DOC 8页 椭圆 练习题 经典 归纳 DOC
- 资源描述:
-
1、初步圆锥曲线感受:已知圆以坐标原点为圆心且过点,为平面上关于原点对称的两点,已知的坐标为,过作直线交圆于两点(1)求圆的方程; (2)求面积的取值范围二. 曲线方程和方程曲线(1) 曲线上点的坐标都是方程的解;(2) 方程的解为坐标的点都在曲线上.三. 轨迹方程例题:教材P.37 A组.T3 T4 B组 T2 练习1.设一动点到直线的距离到它到点的距离之比为,则动点的轨迹方程是_练习2.已知两定点的坐标分别为,动点满足条件,则动点的轨迹方程为_ 总结:求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘的
2、关系,列出方程(4)化简:将方程进行变形化简,并求出的范围四. 设直线方程设直线方程:若直线方程未给出,应先假设.(1)若已知直线过点,则假设方程为; (2)若已知直线恒过轴上一点,则假设方程为; (3)若仅仅知道是直线,则假设方程为【注】以上三种假设方式都要注意斜率是否存在的讨论; (4)若已知直线恒过轴上一点,且水平线不满足条件(斜率为0),可以假设直线为。【反斜截式,】不含垂直于y轴的情况(水平线)例题:圆C的方程为:(1)若直线过点且与圆C相交于A,B两点,且,求直线方程.(2)若直线过点且与圆C相切,求直线方程.(3)若直线过点且与圆C相切,求直线方程.附加:.若直线过点且与圆C相交
3、于P、Q两点,求最大时的直线方程.椭 圆1、椭圆概念平面内与两个定点、的距离的和等于常数2(大于)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫椭圆的焦距。若为椭圆上任意一点,则有.注意:表示椭圆;表示线段;没有轨迹;2、 椭圆标准方程 椭圆方程为,设,则化为这就是焦点在轴上的椭圆的标准方程,这里焦点分别是,且.类比:写出焦点在轴上,中心在原点的椭圆的标准方程 椭圆标准方程:()(焦点在x轴上)或()(焦点在y轴上)。注:(1)以上方程中的大小,其中; (2)要分清焦点的位置,只要看和的分母的大小,“谁大焦点在谁上”一、求解椭圆方程1已知方程表示椭圆,则的取值范围为_.2.椭圆的
4、焦距是( )A2BCD3.若椭圆的两焦点为(2,0)和(2,0),且椭圆过点,则椭圆方程是( )ABCD4.过点(3, 2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程是 ( ) A. B. C. D.5.椭圆的两个焦点是F1(1, 0), F2(1, 0),P为椭圆上一点,且|F1F2|是|PF1|与|PF2|的等差中项,则该椭圆方程是. ( ) A. 1 B. 1 C. 1 D. 1二、椭圆定义的应用1.椭圆上的一点P,到椭圆一个焦点的距离为,则P到另一焦点距离为 ( ) A2 B3 C5 D7 2设定点F1(0,3)、F2(0,3),动点P满足条件,则点P的轨迹是 ( )A椭圆 B
5、线段 C不存在D椭圆或线段3过椭圆的一个焦点的直线与椭圆交于、两点,则、与椭圆的另一焦点构成,那么的周长是( )A B 2 C D 14椭圆上的点M到焦点F1的距离是2,N是MF1的中点,则|ON|为 ( ) A. 4 B . 2 C. 8 D . 5椭圆的焦点为和,点P在椭圆上,若线段的中点在y轴上,那么是的A4倍 B5倍 C7倍 D3倍 三、求椭圆轨迹方程1F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是 A椭圆B直线C线段D圆2.设,的坐标分别为,直线,相交于点,且它们的斜率之积为,求点的轨迹方程 3.已知圆为圆上一点,AQ的垂直平分线交CQ于M,
展开阅读全文