书签 分享 收藏 举报 版权申诉 / 6
上传文档赚钱

类型椭圆和双曲线练习题及答案(DOC 6页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5748058
  • 上传时间:2023-05-06
  • 格式:DOCX
  • 页数:6
  • 大小:175.56KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《椭圆和双曲线练习题及答案(DOC 6页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    椭圆和双曲线练习题及答案DOC 6页 椭圆 双曲线 练习题 答案 DOC
    资源描述:

    1、圆锥曲线测试题一、选择题( 共12题,每题5分 )1已知椭圆的两个焦点为、,且,弦AB过点,则的周长为( )(A)10 (B)20 (C)2(D) 2椭圆上的点P到它的左准线的距离是10,那么点P 到它的右焦点的距离是( )(A)15 (B)12 (C)10 (D)83椭圆的焦点、,P为椭圆上的一点,已知,则的面积为( )(A)9 (B)12 (C)10 (D)84以坐标轴为对称轴、渐近线互相垂直、两准线间距离为2的双曲线方程是( )(A) (B)(C)或 (D)或5双曲线右支点上的一点P到右焦点的距离为2,则P点到左准线的距离为( ) (A)6 (B)8 (C)10 (D)126过双曲线的右

    2、焦点F2有一条弦PQ,|PQ|=7,F1是左焦点,那么F1PQ的周长为( ) (A)28 (B)(C)(D)7双曲线虚轴上的一个端点为M,两个焦点为F1、F2,则双曲线的离心率为( ) (A)(B)(C)(D)8在给定双曲线中,过焦点垂直于实轴的弦长为,焦点到相应准线的距离为,则该双曲线的离心率为( )(A) ( B) 2 ( C) ( D) 29 如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是( )(A)(B)(C)(D)10 如果双曲线上一点到双曲线右焦点的距离是2,那么点到轴的距离是()(A) (B) (C) (D) 11 中心在原点,焦点在y轴的椭圆方程是 ,则 ( )A B

    3、 C D12 已知双曲线的右焦点为,过且斜率为的直线交于两点,若,则的离心率为( ) A、 B、 C、 D、二、填空题( 20 )13 与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是 。14 离心率,一条准线为的椭圆的标准方程是 。15 以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 16已知双曲线的左、右焦点分别为,若双曲线上存在一点使,则该双曲线的离心率的取值范围是 三、解答题( 70 )17) 已知椭圆C的焦点F1(,0)和F2(,0),长轴长6,设直线交椭圆C于A、B两点,求线段AB的中点坐标。18) 已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.19

    4、)求两条渐近线为且截直线所得弦长为的双曲线方程。20(1)椭圆C:(ab0)上的点A(1,)到两焦点的距离之和为4,求椭圆的方程; (2)设K是(1)中椭圆上的动点, F1是左焦点, 求线段F1K的中点的轨迹方程;(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两点,P是椭圆上任意一点, 当直线PM、PN的斜率都存在并记为kPM、kPN时,那么是与点P位置无关的定值。试对双曲线 写出具有类似特性的性质,并加以证明。解:(1) (2)设中点为(x,y), F1(-1,0) K(-2-x,-y)在上 (3)设M(x1,y1), N(-x1,-y1), P(xo,yo) , xox1 则 为

    5、定值。21 (1)当k为何值时,直线l与双曲线有一个交点,两个交点,没有交点。(2) 过点P(1,2)的直线交双曲线于A、B两点,若P为弦AB的中点,求直线AB的方程;(3)是否存在直线,使Q(1,1)为被双曲线所截弦的中点。若存在,求出直线的方程;若不存在,请说明理由。解:(1)当直线l的斜率不存在时,l的方程为x=1,与曲线C有一个交点.当l的斜率存在时,设直线l的方程为y2=k(x1),代入C的方程,并整理得(2k2)x2+2(k22k)xk2+4k6=0(*)()当2k2=0,即k=时,方程(*)有一个根,l与C有一个交点.()当2k20,即k时=2(k22k)24(2k2)(k2+4

    6、k6)=16(32k)当=0,即32k=0,k=时,方程(*)有一个实根,l与C有一个交点.当0,即k,又k,故当k或k或k时,方程(*)有两不等实根,l与C有两个交点.当0,即k时,方程(*)无解,l与C无交点.综上知:当k=,或k=,或k不存在时,l与C只有一个交点;当k,或k,或k时,l与C有两个交点;当k时,l与C没有交点.(2)假设以P为中点的弦为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2两式相减得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=4 2(x1x2)=y1y1 即kAB=1但渐近线斜率为,

    7、结合图形知直线AB与有交点,所以以P为中点的弦为:y=x+1.(3)假设以Q为中点的弦存在,设为AB,且A(x1,y1),B(x2,y2),则2x12y12=2,2x22y22=2两式相减得:2(x1x2)(x1+x2)=(y1y2)(y1+y2)又x1+x2=2,y1+y2=2 2(x1x2)=y1y1 即kAB=2但渐近线斜率为,结合图形知直线AB与C无交点,故假设不正确,即以Q为中点的弦不存在.13)与椭圆具有相同的离心率且过点(2,-)的椭圆的标准方程是 或。14)离心率,一条准线为的椭圆的标准方程是。17) 已知椭圆C的焦点F1(,0)和F2(,0),长轴长6,设直线交椭圆C于A、B

    8、两点,求线段AB的中点坐标。(8分)解:由已知条件得椭圆的焦点在x轴上,其中c=,a=3,从而b=1,所以其标准方程是: .联立方程组,消去y得, .设A(),B(),AB线段的中点为M()则: ,=所以=+2=.也就是说线段AB中点坐标为(-,).18) 已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程.(10分)解:由于椭圆焦点为F(0,4),离心率为e=,所以双曲线的焦点为F(0,4),离心率为2,从而c=4,a=2,b=2.所以求双曲线方程为: .20)求两条渐近线为且截直线所得弦长为的双曲线方程。(10分)解:设双曲线方程为x2-4y2=.联立方程组得: ,消去y得,3x2-24x+(36+)=0设直线被双曲线截得的弦为AB,且A(),B(),那么: 那么:|AB|=解得: =4,所以,所求双曲线方程是:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:椭圆和双曲线练习题及答案(DOC 6页).docx
    链接地址:https://www.163wenku.com/p-5748058.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库