书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型高中数学数列专题练习(精编版)(DOC 14页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5747654
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:15
  • 大小:708KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学数列专题练习(精编版)(DOC 14页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高中数学数列专题练习精编版DOC 14页 高中数学 数列 专题 练习 精编 DOC 14 下载 _其他_数学_高中
    资源描述:

    1、高中数学数列专题练习(精编版)1. 已知数列是等比数列,且(1)求数列的通项公式; (2)求证:; (3)设,求数列的前100项和.2.数列an中,且满足常数(1)求常数和数列的通项公式;(2)设, (3) ,3. 已知数列 , 求4 .已知数列的相邻两项是关于的方程N的两根,且.(1) 求证: 数列是等比数列;(2) 求数列的前项和.5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?6. 从社会效益和经济效益出发,

    2、某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加.(1)设n年内(本年度为第一年)总投入为an万元,旅游业总收入为bn万元,写出an,bn的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?7. 在等比数列an(nN*)中,已知a11,q0设bn=log2an,且b1b3b5=6,b1b3b5=0(1)求数列an、bn的通项公式an、bn;(2)若数列bn的前n项和为Sn,试比较Sn与an的大小8. 已知数列an的前n项和

    3、为Sn,且an是Sn与2的等差中项,数列bn中,b1=1,点P(bn,bn+1)在直线x-y+2=0上。 (1)求a1和a2的值; (2)求数列an,bn的通项an和bn; (3)设cn=anbn,求数列cn的前n项和Tn。9. 已知数列的前n项和为且,数列满足且()求的通项公式;()求证:数列为等比数列;()求前n项和的最小值10. 已知等差数列的前9项和为153(1)求;(2)若,从数列中,依次取出第二项、第四项、第八项,第项,按原来的顺序组成一个新的数列,求数列的前n项和.11.已知曲线:(其中为自然对数的底数)在点处的切线与轴交于点,过点作轴的垂线交曲线于点,曲线在点处的切线与轴交于点

    4、,过点作轴的垂线交曲线于点,依次下去得到一系列点、,设点的坐标为()()分别求与的表达式; ()求12. 在数列(1) 求证:数列是等差数列;(2) 求数列的前n项和;13. 在等差数列中,公差,且,(1)求的值(2)当时,在数列中是否存在一项(正整数),使得 , , 成等比数列,若存在,求的值;若不存在,说明理由(3)若自然数(为正整数)满足 , 使得成等比数列,当时, 用表示 14. 已知二次函数满足条件:; 的最小值为.()求函数的解析式;()设数列的前项积为, 且, 求数列的通项公式;() 在()的条件下, 若是与的等差中项, 试问数列中第几项的 值最小? 求出这个最小值.15. 已知

    5、函数f(x)=x24,设曲线yf(x)在点(xn,f(xn)处的切线与x轴的交点为(xn+1, 0)(nN +), ()用xn表示xn+1;()若x1=4,记an=lg,证明数列成等比数列,并求数列的通项公式;()若x14,bnxn2,Tn是数列bn的前n项和,证明Tn3.数列专题练习参考答案1. 解:(1)设等比数列的公比为.则由等比数列的通项公式得,又数列的通项公式是.数列的前100项和是2解:(1) (3)4 .解:证法1: 是关于的方程N的两根, 由,得, 故数列是首项为,公比为的等比数列. 证法2: 是关于的方程N的两根, , 故数列是首项为,公比为的等比数列. (2)解: 由(1)

    6、得, 即. . . 6. 解:(1)第1年投入为800万元,第2年投入为800(1)万元,第n年投入为800(1)n1万元,所以,n年内的总投入为an=800+800(1)+800(1)n1=800(1)k1=40001()n第1年旅游业收入为400万元,第2年旅游业收入为400(1+),第n年旅游业收入400(1+)n1万元.所以,n年内的旅游业总收入为bn=400+400(1+)+400(1+)k1=400()k1.=1600()n1(2)设至少经过n年旅游业的总收入才能超过总投入,由此bnan0,即:1600()n140001()n0,令x=()n,代入上式得:5x27x+20.解此不等

    7、式,得x,或x1(舍去).即()n,由此得n5.至少经过5年,旅游业的总收入才能超过总投入. 7. 8. 解:(1)an是Sn与2的等差中项Sn=2an-2a1=S1=2a1-2,解得a1=2a1+a2=S2=2a2-2,解得a2=43分 (2)Sn=2an-2,Sn-1=2an-1-2,又SnSn-1=an,an=2an-2an-1,an0,即数列an是等比树立a1=2,an=2n点P(bn,bn+1)在直线x-y+2=0上,bn-bn+1+2=0,bn+1-bn=2,即数列bn是等差数列,又b1=1,bn=2n-1,8分 (3)cn=(2n-1)2nTn=a1b1+ a2b2+anbn=1

    8、2+322+523+(2n-1)2n,2Tn=122+323+(2n-3)2n+(2n-1)2n+1因此:-Tn=12+(222+223+22n)-(2n-1)2n+1,即:-Tn=12+(23+24+2n+1)-(2n-1)2n+1,Tn=(2n-3)2n+1+614分9. 解: (1)由得, 2分 4分(2),; 由上面两式得,又数列是以-30为首项,为公比的等比数列.8分(3)由(2)得,= ,是递增数列 11分当n=1时, 0;当n=2时, 0;当n=3时, 0,所以,从第4项起的各项均大于0,故前3项之和最小.且13分10. 解:(1) 5分 (2)设数列 的公差为d,则9分 12分

    9、11.解:(),曲线:在点处的切线方程为,即此切线与轴的交点的坐标为,点的坐标为 2分点的坐标为(),曲线:在点处的切线方程为, 4分令,得点的横坐标为数列是以0为首项,为公差的等差数列,() 8分() 14分12. 解:(1)由,可得 所以是首项为0,公差为1的等差数列. (2)解:因为即设当时,得 13. 解:(1)在等差数列中,公差,且,则 3分(2)在等差数列中,公差,且,则 又 则 7分(3)在等差数列中,公差,且, 则 又因为公比首项,又因为 12分14.解: (1) 由题知: , 解得 , 故. 2分(2) , , 又满足上式. 所以7分(3) 若是与的等差中项, 则, 从而,

    10、得. 因为是的减函数, 所以当, 即时, 随的增大而减小, 此时最小值为;当, 即时, 随的增大而增大, 此时最小值为. 又, 所以, 20、对生活垃圾进行分类、分装,这是我们每个公民的义务。只要我们人人参与,养成良好的习惯,我们周围的环境一定会变得更加清洁和美丽。即数列中最小, 且. 12分2、你知道日食的形成过程吗?15. 解:()由题可得所以曲线在点处的切线方程是:即9、物质的变化一般分为物理变化和化学变化。化学变化伴随的现象很多,最重要的特点是产生了新物质。物质发生化学变化的过程中一定发生了物理变化。令,得一、填空:即14、在显微镜下观察物体有一定的要求。物体必须制成玻片标本,才能在显微镜下观察它的精细结构。显然,答:可以,馒头中也含有淀粉,淀粉在咀嚼的过程中发生了变化,变得有甜味了。()由,知,同理4、小苏打和白醋混合后,产生了一种新物质二氧化碳气体,这种气体能使燃着的火焰熄灭,这样的变化属于化学变化。故从而,即所以,数列成等比数列故即7、将铁钉的一部分浸入硫酸铜溶液中,有什么现象?过一会儿,取出铁钉,我们又观察到了什么现象?(P36)从而所以()由()知,16、在北部天空的小熊座上有著名的北极星,可以借助大熊座比较容易地找到北极星。黑夜可以用北极星辨认方向。当时,显然当时,20、在水中生活着许我微生物,常见的有草履虫、变形虫、喇叭虫、眼虫、团藻等。综上,

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学数列专题练习(精编版)(DOC 14页).doc
    链接地址:https://www.163wenku.com/p-5747654.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库