高中物理动能与动能定理练习题及答案(DOC 13页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中物理动能与动能定理练习题及答案(DOC 13页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中物理动能与动能定理练习题及答案DOC 13页 高中物理 动能 定理 练习题 答案 DOC 13
- 资源描述:
-
1、高中物理动能与动能定理练习题及答案一、高中物理精讲专题测试动能与动能定理1如图所示,圆弧轨道AB是在竖直平面内的圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D点已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力【答案】(1)圆弧轨道的半径是5m(2)小球滑到B点时对轨道的压力为6N,方向竖直向下【解析】(1)小球由B到D做平抛运动,有:h=gt2x=vBt解得: A到
2、B过程,由动能定理得:mgR=mvB2-0解得轨道半径R=5m(2)在B点,由向心力公式得: 解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动2如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并
3、被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。【答案】(1)10.5J(2)3J(3)0.3mR0.42m或0R0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。从A到压缩弹簧至最短的过程中,由动能定理得: mgl+W弹0mv02由功能关系:W弹=-Ep=-Ep解得 Ep=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得 2mglEkmv02解得 Ek=3J;(3)小物块第一次返回后进入圆形
4、轨道的运动,有以下两种情况:小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得 2mgRmv22Ek小物块能够经过最高点的条件mmg,解得 R0.12m小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即mv12mgR,解得R0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:2mgRmv12-mv02且需要满足 mmg,解得R0.72m,综合以上考虑,R需要满足的条件为:0.3mR0.42m或0R0.12m。【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的
5、过程。3如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A点,自然状态时其右端位于B点。水平桌面右侧有一竖直放置的光滑轨道MNP,其形状为半径R=1.0m的圆环剪去了左上角120的圆弧,MN为其竖直直径,P点到桌面的竖直距离是h=2.4m。用质量为m=0.2kg的物块将弹簧由B点缓慢压缩至C点后由静止释放,弹簧在C点时储存的弹性势能Ep=3.2J,物块飞离桌面后恰好P点沿切线落入圆轨道。已知物块与桌面间的动摩擦因数=0.4,重力加速度g值取10m/s2,不计空气阻力,求(1)物块通过P点的速度大小;(2)物块经过轨道最高点M时对轨道的压力大小;(3)C、D两点间的距离;【答案】(1)8m/s;(
6、2)4.8N;(3)2m【解析】【分析】【详解】(1)通过P点时,由几何关系可知,速度方向与水平方向夹角为60o,则整理可得,物块通过P点的速度(2)从P到M点的过程中,机械能守恒在最高点时根据牛顿第二定律整理得根据牛顿第三定律可知,物块对轨道的压力大小为(3)从D到P物块做平抛运动,因此从C到D的过程中,根据能量守恒定律C、D两点间的距离4如图,在竖直平面内,半径R=0.5m的光滑圆弧轨道ABC与粗糙的足够长斜面CD相切于C点,CD与水平面的夹角=37,B是轨道最低点,其最大承受力Fm=21N,过A点的切线沿竖直方向。现有一质量m=0.1kg的小物块,从A点正上方的P点由静止落下。已知物块与
7、斜面之间的动摩擦因数=0.5.取sin37=0.6.co37=0.8,g=10m/s2,不计空气阻力。(1)为保证轨道不会被破坏,求P、A间的最大高度差H及物块能沿斜面上滑的最大距离L;(2)若P、A间的高度差h=3.6m,求系统最终因摩擦所产生的总热量Q。【答案】(1) 4.5m,4.9m;(2) 4J【解析】【详解】(1)设物块在B点的最大速度为vB,由牛顿第二定律得:从P到,由动能定理得解得H=4.5m物块从B点运动到斜面最高处的过程中,根据动能定理得:-mgR(1-cos37)+Lsin37-mgcos37L=解得L=4.9m(3)物块在斜面上,由于mgsin37mgcos37,物块不
8、会停在斜面上,物块最后以B点为中心,C点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量Q=mg(h+Rcos37)解得Q=4J5如图所示,粗糙水平地面与半径为R=0.4m的粗糙半圆轨道BCD相连接,且在同一竖直平面内,O是BCD的圆心,BOD在同一竖直线上质量为m=1kg的小物块在水平恒力F=15N的作用下,从A点由静止开始做匀加速直线运动,当小物块运动到B点时撤去F,小物块沿半圆轨道运动恰好能通过D点,已知A、B间的距离为3m,小物块与地面间的动摩擦因数为0.5,重力加速度g取10m/s2求:(1)小物块运动到B点时对圆轨道B点的压力大小(2)小物块离开D点后落到地面
9、上的点与D点之间的距离【答案】(1)160N(2)0.8m【解析】【详解】(1)小物块在水平面上从A运动到B过程中,根据动能定理,有:(F-mg)xAB=mvB2-0在B点,以物块为研究对象,根据牛顿第二定律得:联立解得小物块运动到B点时轨道对物块的支持力为:N=160N由牛顿第三定律可得,小物块运动到B点时对圆轨道B点的压力大小为:N=N=160N(2)因为小物块恰能通过D点,所以在D点小物块所受的重力等于向心力,即:可得:vD=2m/s设小物块落地点距B点之间的距离为x,下落时间为t,根据平抛运动的规律有:x=vDt,2R=gt2解得:x=0.8m则小物块离开D点后落到地面上的点与D点之间
10、的距离6如图所示,半径为R11.8 m的光滑圆弧与半径为R20.3 m的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L2.0 m、质量为M1.5 kg的木板,木板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同现在让质量为m22 kg的物块静止于B处,质量为m11 kg的物块从光滑圆弧顶部的A处由静止释放,物块m1下滑至B处和m2碰撞后不再分开,整体设为物块m(mm1m2)物块m穿过半圆管底部C处滑上木板使其从静止开始向左运动,当木板速度为2 m/s时,木板与台阶碰撞立即被粘住(即速度变为零),若g10 m/s2,物块碰撞前后均可视为
展开阅读全文