高中数学必修三《线性回归》练习题(DOC 6页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学必修三《线性回归》练习题(DOC 6页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性回归 高中数学必修三线性回归练习题DOC 6页 高中数学 必修 线性 回归 练习题 DOC 下载 _其他_数学_高中
- 资源描述:
-
1、线性回归练习题 A.基础达标1(2015张掖高一检测)有几组变量:汽车的重量和汽车每消耗1升汽油所行驶的平均路程;平均日学习时间和平均学习成绩;立方体的棱长和体积其中两个变量成正相关的是()ABC D解析:选C.是负相关;是正相关;是函数关系,不是相关关系2对于给定的两个变量的统计数据,下列说法正确的是()A都可以分析出两个变量的关系B都可以用一条直线近似地表示两者的关系C都可以作出散点图D都可以用确定的表达式表示两者的关系解析:选C.由两个变量的数据统计,不能分析出两个变量的关系,A错;不具有线性相关的两个变量不能用一条直线近似地表示他们的关系,更不能用确定的表达式表示他们的关系,B,D错3
2、对有线性相关关系的两个变量建立的回归直线方程x中,回归系数()A不能小于0 B不能大于0C不能等于0 D只能小于0解析:选C.当0时,r0,这时不具有线性相关关系,但能大于0,也能小于0.4(2013高考湖北卷)四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:() y与x负相关且2.347x6.423; y与x负相关且3.476x5.648; y与x正相关且5.437x8.493; y与x正相关且4.326x4.578.其中一定不正确的结论的序号是()A BC D解析:选D.由正负相关性的定义知一定不正确5设某大学的女生体重y(单位:kg)与身
3、高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i1,2,n),用最小二乘法建立的回归方程为0.85x85.71,则下列结论中不正确的是()Ay与x具有正的线性相关关系B回归直线过样本点的中心(,)C若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg解析:选D.当x170时,0.8517085.7158.79,体重的估计值为58.79 kg,故D不正确6已知一个回归直线方程为1.5x45,x1,7,5,13,19,则_解析:因为(1751319)9,且回归直线过样本中心点(x,y),所以1.59
4、4558.5.答案:58.57对具有线性相关关系的变量x和y,测得一组数据如下表,若已求得它们回归直线的斜率为6.5,则这条回归直线的方程为_.x24568y3040605070解析:设回归直线方程为x,则6.5,易知50,5,所以5032.517.5,即回归直线方程为6.5x17.5.答案:6.5x17.58对某台机器购置后的运营年限x(x1,2,3,)与当年利润y的统计分析知具备线性相关关系,线性回归方程为10.471.3x,估计该台机器使用_年最合算解析:只要预计利润不为负数,使用该机器就算合算,即0,所以10.471.3x0,解得x8.05,所以该台机器使用8年最合算答案:89某工厂为
5、了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(元)88.28.48.68.89销量y(件)908483807568(1)求回归直线方程x,其中20,;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)解:(1)由于(88.28.48.68.89)8.5,(908483807568)80.所以80208.5250,从而回归直线方程为20x250.(2)设工厂获得的利润为L元,依题意得Lx(20x250)4(20x250)20x2330x1 00020
展开阅读全文