书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型高一数学二次函数在闭区间上的最值练习题(DOC 13页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5747383
  • 上传时间:2023-05-06
  • 格式:DOC
  • 页数:15
  • 大小:693.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高一数学二次函数在闭区间上的最值练习题(DOC 13页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高一数学二次函数在闭区间上的最值练习题DOC 13页 数学 二次 函数 区间 练习题 DOC 13 下载 _考试试卷_数学_高中
    资源描述:

    1、百度文库 - 让每个人平等地提升自我基础过关第1课 二次函数在闭区间上的最值一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况.设,求在上的最大值与最小值。分析:将配方,得顶点为、对称轴为 当时,它的图象是开口向上的抛物线,数形结合可得在m,n上的最值:(1)当时,的最小值是,的最大值是中的较大者。(2)当时,在上是增函数则的最小值是,最大值是(3)当时,在上是减函数则的最大值是,最小值是当时,可类比得结论。典型例题(一)、正向型是指已知二次函数和定义域区间,求其最值。对称轴与定义域区间的相互位置关系的讨论往往成为解决这

    2、类问题的关键。此类问题包括以下四种情形:(1)轴定,区间定; (2)轴定,区间变; (3)轴变,区间定; (4)轴变,区间变。1. 轴定区间定 二次函数是给定的,给出的定义域区间也是固定的,我们称这种情况是“定二次函数在定区间上的最值”。例1. 函数在区间0,3上的最大值是_,最小值是_。练习. 已知,求函数的最值。2、轴定区间变 二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定函数在动区间上的最值”。例2. 如果函数定义在区间上,求的最小值。例3. 已知,当,时,求的最大值观察前两题的解法,为什么最值有时候分两种情况讨论,而有时候又分三种情况讨论呢?这些问题其实仔细思

    3、考就很容易解决。不难观察:二次函数在闭区间上的的最值总是在闭区间的端点或二次函数的顶点取到。第一个例题中,这个二次函数是开口向上的,在闭区间上,它的最小值在区间的两个端点或二次函数的顶点都有可能取到,有三种可能,所以分三种情况讨论;而它的最大值不可能是二次函数的顶点,只可能是闭区间的两个端点,哪个端点距离对称轴远就在哪个端点取到,当然也就根据区间中点与左右端点的远近分两种情况讨论。根据这个理解,不难解释第二个例题为什么这样讨论。对二次函数的区间最值结合函数图象总结如下: 当时 当时 3、轴变区间定 二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函

    4、数在定区间上的最值”。例4. 已知,且,求函数的最值。例5. (1) 求在区间-1,2上的最大值。(2) 求函数在上的最大值。4. 轴变区间变 二次函数是含参数的函数,而定义域区间也是变化的,我们称这种情况是“动二次函数在动区间上的最值”。例6. 已知 ,求的最小值。(二)、逆向型 是指已知二次函数在某区间上的最值,求函数或区间中参数的取值。例7. 已知函数在区间上的最大值为4,求实数的值。 例8. 已知函数在区间上的最小值是3最大值是3,求,的值。评注:解法利用闭区间上的最值不超过整个定义域上的最值,缩小了,的取值范围,避开了繁难的分类讨论,解题过程简洁、明了。例9. 已知二次函数在区间上的

    5、最大值为3,求实数a的值。解后反思:若函数图象的开口方向、对称轴均不确定,且动区间所含参数与确定函数的参数一致,可采用先斩后奏的方法,利用二次函数在闭区间上的最值只可能在区间端点、顶点处取得,不妨令之为最值,验证参数的资格,进行取舍,从而避开繁难的分类讨论,使解题过程简洁、明了。巩固训练1函数在上的最小值和最大值分别是( ) 1 ,3 ,3 (C) ,3 (D), 32函数在区间 上的最小值是() 23函数的最值为()最大值为8,最小值为0不存在最小值,最大值为8(C)最小值为0, 不存在最大值 不存在最小值,也不存在最大值4若函数的取值范围是_5已知函数上的最大值是1,则实数a的值为 6如果

    6、实数满足,那么有( ) (A) 最大值为 1 , 最小值为 (B) 无最大值,最小值为 (C)最大值为 1, 无最小值 (D) 最大值为1,最小值为7已知函数在闭区间上有最大值3,最小值2,则的取值范围是( ) (A) (B) (C) (D) 8若,那么的最小值为_9设是方程的两个实根,则的最小值_10设求函数的最小值的解析式。11已知,在区间上的最大值为,求的最小值。12. 设为实数,函数. (1) 若,求的取值范围;(2) 求的最小值; (3) 设函数,直接写出不等式的解集(不需给出演算步骤).基础过关第2课 函数的定义域和值域一、定义域:1函数的定义域就是使函数式 的集合.2常见的三种题

    7、型确定定义域: 已知函数的解析式,就是 . 复合函数的有关定义域,就要保证内函数的 域是外函数的 域. 实际应用问题的定义域,就是要使得 有意义的自变量的取值集合.二、值域:1函数中,与自变量x的值 的集合.2求函数值域的常用方法: 观察法; 配方法; 反函数法; 不等式法; 单调性法;数形法; 判别式法; 有界性法; 换元法例如: ,可采用 法; ,可采用 法或 法; ,可采用 法; ,可采用 法;,可采用 法; 可采用 法等.典型例题例1. 求下列函数的定义域:(1); (2); (3) .变式训练1:求下列函数的定义域:(1) ; (2); 2. 设函数的定义域为0,1,求下列函数的定义

    8、域.(1); (2);(3); (4).变式训练2:若函数的定义域是0,1,则(0a)的定义域是 ( ) A. B. C. D.0,1例3. 求下列函数的值域:(1) (2) ; (3).变式训练3:求下列函数的值域:(1); (2) .例4若函数的定义域和值域均为1,(1),求、的值.变式训练4:已知函数 (xR).(1)求函数的值域为0,+)时的的值;(2)若函数的值均为非负值,求函数的值域.基础过关第3课 指数、对数和幂函数1指数:(1) 规定: a0 (a0); a-p ; .(2) 运算性质: (a0, r、R) (a0, r、R) 2指数函数: 定义:函数 称为指数函数, 性质:

    9、1) 函数的定义域为 ; 2) 函数的值域为 ; 3)恒过定点 ,4) 当_时函数为减函数, 当_时为增函数. 函数图象:3对数:(1) 定义:如果,那么 ,其中称为对数的底,N称为真数.(2) 基本性质: ; ; = 换底公式 4对数函数: 定义:函数 称为对数函数, 性质 1) 函数的定义域为 ; 2) 函数的值域为 ;3)恒过定点 ,4) 当_时,函数为减函数,当_时为增函数;5) 函数与函数 互为反函数. 函数图象:5幂函数: 定义:我们把形如 的函数称为幂函数,其中 是自变量, 是常数; 性质:(1)幂函数的图象都过点 ; (2)任何幂函数都不过 象限;(3)当时,幂函数在上 ;当时

    10、,幂函数在上 ;(4)当时,幂函数是 ;当时,幂函数是 函数图象:1.指数函数例1. 已知a=,b=9. 求:(1) (2).变式训练1:化简下列各式(其中各字母均为正数):(1) (2)例2. 函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(bx)与f(cx)的大小关系是 ( )(bx)f(cx) (bx)f(cx) (bx)f(cx) D.大小关系随x的不同而不同变式训练2:已知实数a、b满足等式,下列五个关系式中,不可能成立的关系式有( )个 0ba; ab0; 0ab; ba0; a=b.例3. 求下列函数的定义域、值域及其单调区间:(1)f(x)=3;

    11、 (2)g(x)=-.变式训练3:求下列函数的单调递增区间:(1)y=(; (2)y=2.例4设a0,f(x)=是R上的偶函数.(1)求a的值; (2)求证:f(x)在(0,+)上是增函数.变式训练4:已知定义在R上的奇函数f(x)有最小正周期2即,且当x(0,1)时,f(x)=. (1)求f(x)在-1,1上的解析式;(2)证明:f(x)在(0,1)上是减函数.2.对数函数例1 计算:(1)(2)2(lg)2+lglg5+;变式训练1:化简求值.(1)(lg2)2+lg2lg50+lg25;(2)(log32+log92)(log43+log83).例2 比较下列各组数的大小.(1)log3

    12、与log5;(2)log1.10.7与变式训练2:已知0a1,b1,ab1,则loga的大小关系是 ( ) B. C. D.例3已知函数f(x)=logax(a0,a1),如果对于任意x3,+)都有|f(x)|1成立,试求a的取值范围.变式训练3:已知函数f(x)=log2(x2-ax-a)在区间(-,1-上是单调递减函数.求实数a的取值范围.例4 已知函数(1)求的定义域; (2)判断的奇偶性并予以证明; (3)若 求实数的取值范围变式训练4 已知(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)0的x取值范围.3.幂函数例1.写出下列函数的定义域,并指出它们的奇偶性:(1) (2) (3)变式训练1:讨论下列函数的定义域、值域,奇偶性与单调性:(1) (2) (3)例2比较大小:(1) (2)(3) (4)变式训练2:将下列各组数用小于号从小到大排列:(1) (2) (3)例3已知幂函数()的图象与轴、轴都无交点,且关于原点对称,求的值分析:幂函数图象与轴、轴都无交点,则指数小于或等于零;图象关于原点对称,则函数为奇函数结合,便可逐步确定的值 变式训练3:证明幂函数在上是减函数35

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高一数学二次函数在闭区间上的最值练习题(DOC 13页).doc
    链接地址:https://www.163wenku.com/p-5747383.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库