等比数列基础练习题-(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等比数列基础练习题-(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列基础练习题-DOC 21页 等比数列 基础 练习题 DOC 21
- 资源描述:
-
1、一、等比数列选择题1在数列中,对任意的,若,则( )A3B4C5D62在等比数列中,则( )ABCD3已知等比数列an中,有a3a114a7,数列bn是等差数列,且b7a7,则b5b9( )A4B5C8D154已知正项等比数列满足,又为数列 的前项和,则( )A 或BCD5已知是正项等比数列且, 成等差数列,则( )ABCD6已知等比数列an的前n项和为Sn,若S3=7,S6=63,则数列nan的前n项和为( )A-3+(n+1)2nB3+(n+1)2nC1+(n+1)2nD1+(n-1)2n7“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡
2、献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于,若第六个单音的频率为f,则( )A第四个单音的频率为B第三个单音的频率为C第五个单音的频率为D第八个单音的频率为8已知等比数列an中a10102,若数列bn满足b1,且an,则b2020( )A22017B22018C22019D220209已知正项等比数列的公比不为1,为其前项积,若,则( )ABCD10已知公比大于1的等比数列满足,.则数列的前项的和为( )ABCD11题目文件丢失!12已知等比数列的前5项积为32,则的取值范围为( )ABCD13公差不为0的等差数
3、列中,数列是等比数列,且,则( )A2B4C8D1614在数列中,若,则的最小值是( )A9B10C11D1215已知数列的首项,前项的和为,且满足,则满足的的最大值为( ).A7B8C9D1016已知等比数列中,则( )ABCD17正项等比数列的公比是,且,则其前3项的和( )A14B13C12D1118已知正项等比数列满足,若存在两项,使得,则的最小值为( )ABCD19已知等比数列中,则( )A2B3C4D520已知等比数列的前n项和为,且,则( )ABCD二、多选题21题目文件丢失!22已知等差数列,其前n项的和为,则下列结论正确的是( )A数列|为等差数列B数列为等比数列C若,则D若
4、,则23已知数列的前项和为,且,(,为非零常数),则下列结论正确的是( )A是等比数列B当时,C当时,D24已知数列是公比为q的等比数列,若数列有连续4项在集合-50,-20,22,40,85中,则公比q的值可以是( )ABCD25已知集合,将的所有元素从小到大依次排列构成一个数列,记为数列的前项和,则使得成立的的可能取值为( )A25B26C27D2826数列对任意的正整数均有,若,则的可能值为( )A1023B341C1024D34227已知数列是等比数列,那么下列数列一定是等比数列的是( )ABCD28设等比数列的公比为,其前项和为,前项积为,并且满足条件,则下列结论正确的是( )ABC
5、的最大值为D的最大值为29记单调递增的等比数列的前项和为,若,则( )ABCD30已知数列满足,则下列结论正确的有( )A为等比数列B的通项公式为C为递增数列D的前项和31在公比为整数的等比数列中,是数列的前项和,若,则下列说法正确的是( )AB数列是等比数列CD数列是公差为2的等差数列32已知数列an为等差数列,首项为1,公差为2,数列bn为等比数列,首项为1,公比为2,设,Tn为数列cn的前n项和,则当Tn2019时,n的取值可以是下面选项中的( )A8B9C10D1133已知等差数列的首项为1,公差,前n项和为,则下列结论成立的有( )A数列的前10项和为100B若成等比数列,则C若,则
6、n的最小值为6D若,则的最小值为34等差数列的公差为,前项和为,当首项和变化时,是一个定值,则下列各数也为定值的有( )ABCD35对于数列,若存在数列满足(),则称数列是的“倒差数列”,下列关于“倒差数列”描述正确的是( )A若数列是单增数列,但其“倒差数列”不一定是单增数列;B若,则其“倒差数列”有最大值;C若,则其“倒差数列”有最小值;D若,则其“倒差数列”有最大值.【参考答案】*试卷处理标记,请不要删除一、等比数列选择题1C【分析】令,可得,可得数列为等比数列,利用等比数列前n项和公式,求解即可.【详解】因为对任意的,都有,所以令,则,因为,所以,即,所以数列是以2为首项,2为公比的等
7、比数列,所以,解得n=5,故选:C2C【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出的值.【详解】因为,所以,所以,所以,故选:C.3C【分析】由等比中项,根据a3a114a7求得a7,进而求得b7,再利用等差中项求解.【详解】a3a114a7,4a7,a70,a74,b74,b5b92b78故选:C4B【分析】由等比中项的性质可求出,即可求出公比,代入等比数列求和公式即可求解.【详解】正项等比数列中,解得或(舍去)又,解得,故选:B5D【分析】根据, 成等差数列可得,转化为关于和的方程,求出的值,将化简即可求解.【详解】因为是正项等比数列且, 成等差数列,所以,即,
8、所以,解得:或(舍),故选:D6D【分析】利用已知条件列出方程组求解即可得,求出数列an的通项公式,再利用错位相减法求和即可.【详解】设等比数列an的公比为q,易知q1,所以由题设得,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n2n-1.设数列nan的前n项和为Tn,则Tn=120+221+322+n2n-1,2Tn=121+222+323+n2n,两式作差得-Tn=1+2+22+2n-1-n2n=-n2n=-1+(1-n)2n,故Tn=1+(n-1)2n.故选:D.【点睛】本题主要考查了求等比数列的通项公式问题以及利用错位相减法求和的
9、问题.属于较易题.7B【分析】根据题意得该单音构成公比为的等比数列,再根据等比数列通项公式依次求第三、四、五、八项即可得答案.【详解】解:根据题意得该单音构成公比为的等比数列,因为第六个单音的频率为f,所以第三个单音的频率为.所以第四个单音的频率为.所以第五个单音的频率为.所以第八个单音的频率为故选:B.8A【分析】根据已知条件计算的结果为,再根据等比数列下标和性质求解出的结果.【详解】因为,所以,因为数列为等比数列,且,所以所以,又,所以,故选:A.【点睛】结论点睛:等差、等比数列的下标和性质:若,(1)当为等差数列,则有;(2)当为等比数列,则有.9A【分析】由得,由等比数列性质得,这样可
10、把和用表示出来后,可求得【详解】是正项等比数列,所以由,得,所以,设公比为,即,所以故选:A【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比表示出相应的项后可得结论10D【分析】根据条件列出方程组可求出等比数列的公比和首项,即可得到数列的通项公式,代入可知数列为等比数列,求和即可.【详解】因为公比大于1的等比数列满足,所以,解得,所以,是以8为首项,为公比的等比数列,故选:D【点睛】关键点点睛:求出等比数列的通项公式后,代入新数列,可得数列的通项公式,由通项公式可知数列为等比数列,根据等比数列的求和公式计算即可.11无12C【分析】由等比数列性质求得,把表示为
11、的函数,由函数单调性得取值范围【详解】因为等比数列的前5项积为32,所以,解得,则,易知函数在上单调递增,所以,故选:C【点睛】关键点点睛:本题考查等比数列的性质,解题关键是选定一个参数作为变量,把待求值的表示为变量的函数,然后由函数的性质求解本题蝇利用等比数列性质求得,选为参数13D【分析】根据等差数列的性质得到,数列是等比数列,故=16.【详解】等差数列中,故原式等价于解得或 各项不为0的等差数列,故得到,数列是等比数列,故=16.故选:D.14C【分析】根据递推关系可得数列是以1为首项,2为公比的等比数列,利用等比数列的通项公式可得,即求.【详解】因为,所以,即,所以数列是以1为首项,2
展开阅读全文