高等数学练习题(附答案)(DOC 29页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高等数学练习题(附答案)(DOC 29页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高等数学练习题附答案DOC 29页 高等数学 练习题 答案 DOC 29
- 资源描述:
-
1、精品文档高等数学专业 年级 学号 姓名 一、判断题. 将或填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量.( )3. 闭区间上的间断函数必无界.( )4. 单调函数的导函数也是单调函数.( )5. 若在点可导,则也在点可导.( )6. 若连续函数在点不可导,则曲线在点没有切线.( )7. 若在上可积,则在上连续.( )8. 若在()处的两个一阶偏导数存在,则函数在()处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数在区间内具有二阶导数,且 , 则为的一个极小值.二、填空题.(每题2分,共2
2、0分)1. 设,则 .2. 若,则 .3. 设单调可微函数的反函数为, 则 .4. 设, 则 .5. 曲线在点切线的斜率为 .6. 设为可导函数,则 .7. 若则 .8. 在0,4上的最大值为 .9. 广义积分 .10. 设D为圆形区域 .三、计算题(每题5分,共40分)1. 计算.2. 求在(0,+)内的导数.3. 求不定积分.4. 计算定积分.5. 求函数的极值.6. 设平面区域D是由围成,计算.7. 计算由曲线围成的平面图形在第一象限的面积.8. 求微分方程的通解.四、证明题(每题10分,共20分)1. 证明: .2. 设在闭区间上连续,且证明:方程在区间内有且仅有一个实根.高等数学参考
3、答案一、判断题. 将或填入相应的括号内(每题2分,共20分)1. ;2. ;3.; 4. ;5.; 6. ;7. ;8. ;9. ;10.二、 填空题.(每题2分,共20分)1.; 2. 1; 3. 1/2; 4.; 5. 2/3 ; 6. 1 ; 7. ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 且 ,=0 由迫敛性定理知: =0 2.解:先求对数 3.解:原式= = =2 4.解:原式= = = = =4/5 5.解: 故 或 当 时, 且A= (0,0)为极大值点 且 当 时, , 无法判断 6.解:D= = = = = = 7.解:令,
4、;则, 8.解:令 ,知 由微分公式知: 四.证明题(每题10分,共20分)1.解:设 =0 令 即:原式成立。 2.解: 上连续且 0故方程在上至少有一个实根. 又 即 在区间上单调递增 在区间上有且仅有一个实根. 高等数学专业 学号 姓名 一、判断题(对的打,错的打;每题分,共分)1.在点处有定义是在点处连续的必要条件.2. 若在点不可导,则曲线在处一定没有切线.3. 若在上可积,在上不可积,则在上必不可积.4. 方程和在空间直角坐标系中分别表示三个坐标轴和一个点.5. 设是一阶线性非齐次微分方程的一个特解,是其所对应的齐次方程的通解,则为一阶线性微分方程的通解.二、填空题(每题分,共分)
5、1. 设则 .2. 设,当 时,在点连续.3. 设,则 .4. 已知在处可导,且,则 . 5. 若,并且,则.6. 若在点左连续,且 ,则与大小比较为 7. 若,则;.8. 设,则.9. 设,则.10. 累次积分化为极坐标下的累次积分为 .三、计算题(前题每题分,后两题每题分,共分)1. ; 2. 设,求; 3. ;4. ; 5. 设, 求.6. 求由方程所确定的函数的微分.7. 设平面区域是由围成,计算. 8. 求方程在初始条件下的特解. 四、(分)已知在处有极值,试确定系数、,并求出所有的极大值与极小值.五、应用题(每题分,共分)1. 一艘轮船在航行中的燃料费和它的速度的立方成正比. 已知
6、当速度为时,燃料费为每小时元,而其它与速度无关的费用为每小时元. 问轮船的速度为多少时, 每航行所消耗的费用最小?2. 过点向曲线作切线,求:(1)切线与曲线所围成图形的面积;(2)图形绕轴旋转所得旋转体的体积. 六、证明题(分)设函数在上的二阶导数存在,且, . 证明在上单调增加.高等数学参考答案一、判断题 1.; 2.; 3. ; 4. ; 5.二、填空题1. 36 ; 2. ; 3. ; 4. ; 5. ; 6.;7. ; 8. ; 9. ; 10.三、计算题1. 原式 2. 3原式= 4设 则 原式= 5 6两边同时微分得: 即 故 (本题求出导数后,用解出结果也可)7 8原方程可化为
7、 通解为 代入通解得 故所求特解为: 四、解: 因为在处有极值,所以必为驻点故 又 解得: 于是 由 得 ,从而 , 在处有极小值 ,在处有极大值 五、1.解:设船速为,依题意每航行的耗费为 又 时, 故得, 所以有, 令 , 得驻点 由极值第一充分条件检验得是极小值点.由于在上该函数处处可导,且只有唯一的极值点,当它为极小值点时必为最小值点,所以求得船速为时,每航行的耗费最少,其值为(元) 2.解:(1)设切线与抛物线交点为,则切线的斜率为,又因为上的切线斜率满足,在上即有所以,即 又因为满足,解方程组 得 所以切线方程为 则所围成图形的面积为: (2)图形绕轴旋转所得旋转体的体积为: 六、
8、证: 在上,对应用拉格朗日中值定理,则存在一点,使得 代入上式得 由假设知为增函数,又,则,于是,从而,故在内单调增加. 高等数学试卷专业 学号 姓名 一、填空题(每小题1分,共10分)1函数的定义域为_。 2函数 上点( , )处的切线方程是_。 3设在可导且,则 _。 4设曲线过,且其上任意点的切线斜率为,则该曲线的方程是_。 5_。 _。 7设,则_。 8累次积分化为极坐标下的累次积分为_。 9微分方程的阶数为_。 10设级数 发散,则级数 _。二、单项选择题(在每小题的四个备选答案中,选出一个正确的答案,将其码写在题干的( )内,(110每小题1分,1117每小题2分,共24分)1设函
展开阅读全文