书签 分享 收藏 举报 版权申诉 / 15
上传文档赚钱

类型圆柱体积教学设计方案(DOC 15页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5734133
  • 上传时间:2023-05-06
  • 格式:DOCX
  • 页数:15
  • 大小:18.87KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《圆柱体积教学设计方案(DOC 15页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    圆柱体积教学设计方案DOC 15页 圆柱 体积 教学 设计方案 DOC 15
    资源描述:

    1、圆柱体积教学设计方案篇一:圆柱的体积优秀.教学目标:1、通过教学,使学生经历观察、猜想、操作、验证、交流和归纳等数学活动过程,探索并掌握圆柱的体积公式,初步学会应用公式计算圆柱的体积,并解决相关的简单实际问题;2、使学生在活动中进一步体会“转化”方法的价值,培养应用已有知识解决新问题的能力。3、培养学生初步的空间概念、动手能力、操作能力和逻辑思维推理能力。教学重点:掌握和运用圆柱体积计算公式进行正确计算。教学难点:理解圆柱体积计算公式的推导过程,体会“转化”方法的价值。教学准备:1、用于演示把圆柱体积转化成长方体体积的教具。2、多媒体课件。教学过程:一、复习导入、揭示课题谈话:前几节课我们已经

    2、认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?(指名学生回答,教师演示课件。根据学生的回答,板书:长方体的体积=底面积高)1、呈现长方体、正方体和圆柱的直观图。2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。(板书课题:圆柱的体积)3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导

    3、出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。二、自主探究,精讲点拨1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢?2、学生小组讨论、交流。教师:同学们自己先在小组里讨论一下(1)你准备把圆柱体转化成什么立体图形?(2)你是怎样转化成这个立体图形的?(3)转化以后的立体图形和圆柱体之间有什么关系?3、推导圆柱体积公式。学生交流,教师动画演示。(1)把圆柱体转化成长方体。(2)怎样转化成长方体呢?(指名叙述:把

    4、圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具)(3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了,体积大小没变。)(5)推导圆柱体积公式。讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。)教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:圆柱的体积 = 底面积高V = S h三、运用公示,解决问

    5、题教师:根据圆柱体积的计算公式,如果要求圆柱的体积,你必须知道哪些条件就可以求?知道圆柱的底面积和高,可以求圆柱的体积。练习七的第1题:填表。知道圆柱的底面半径和高,可以求圆柱的体积。试一试。知道圆柱的底面积直径和高,可以求圆柱的体积。练一练的第1题:计算下面各圆柱的体积。知道圆柱的底面周长和高,可以求圆柱的体积。一根圆柱形零件,底面周长是12.56厘米,长是10厘米,它的体积是多少?四、迁移应用,质疑反馈。1、判断正误,对的画“”,错误的画“”。2、计算下面各圆柱的体积。3、智慧屋:已知一个圆柱的侧面积为37.68平方厘米,底面半径为3厘米,求这个圆柱的体积。五、全课小结。这节课我们一起学习

    6、了运用转化的方法推导出圆柱体积的计算公式,并且能够运用圆柱体积的计算公式解决一些实际问题。在今后的学习中,特别提醒大家一定正确计算出圆柱的体积,并且能灵活运用圆柱的体积计算公式。六、作业布置:完成作业纸上的习题教学反思本节可的教学内容是九年义务教育苏教版六年级下册的圆柱的体积,以前教学此内容时,直接告诉学生:圆柱的体积底面积高,用字母表示公式:VSh,让学生套公式练习;我教此内容时,不按传统的教学方法,而是采用新的教学理念,让学生自己动手实践、自主探索与合作交流,在实践中体验,从而获得知识。对此,我作如下反思:一、学生学到了有价值的知识。学生通过实践、探索、发现,得到的知识是“活”的,这样的知

    7、识对学生自身智力和创造力发展会起到积极的推动作用。所有的答案也不是老师告诉的,而是、学生在自己艰苦的学习中发现并从学生的口里说出来的这样的知识具有个人意义,理解更深刻。二、培养了学生的科学精神和方法。新课程改革明确提出要“强调让学生通过实践增强探究和创新意识,学习科学研究的方法,培养科学态度和科学精神”。学生动手实践、观察得出结论的过程,就是科学研究的过程。三、促进了学生的思维发展。传统的教学只关注教给学生多少知识,把学生当成知识的“容器”。学生的学习只是被动地接受、记忆、模仿,往往学生只知其然而不知其所以然,其思维根本得不到发展。而这里创设了丰富的教学情景,学生在兴趣盎然中经历了自主探究、独

    8、立思考、分析整理、合作交流等过程,发现了教学问题的存在,经历了知识产生的过程,理解和掌握了数学基本知识,从而促进了学生的思维发展。不足之处是:1、2、 留给学生自由讨论、实践和思考的时间较少。 教学时教师语言过于平缓,没有调动起学生的积极性。篇二:圆柱的体积教学设计教材版本义务教育课程标准实验教科书 (人教版) 六年级数学下册。课程标准摘录1、结合具体情境,探索并掌握长方体、正方体、圆柱体的体积和表面积以及圆锥体体积的计算方法。2、探索某些实物体积的测量方法。学情与教材分析“圆柱的体积” 是人教版六年级下册“圆柱和圆锥”这一单元的第四节的内容,在学习本节内容之前,学生已经认识了圆柱,学习了体积

    9、,经历了长、正方体的体积推导过程以及圆面积公式的推导过程。在推导圆柱的体积公式时,把圆柱体转化成长方体,高并没有变,只是把底面的圆形转化成长方形,它的转化过程实际上和圆转化成长方形求面积的方法相同,学生已具备有学习本课的技能。教学中不仅要让学生知道圆柱体积计算公式是什么,而且要让学生主动探索、经历圆柱体体积计算公式的推导过程,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。学习目标1、经历探究和推导圆柱的体积计算公式的过程,理解并掌握圆柱体积计算方法,并能正确计算圆柱体积,达标率100%。2、能运用圆柱的体积计算方法,解决有关的实际问题,发展学生的实践能力,达标率95%

    10、。3、能积极参与圆柱体积计算公式推导活动,能有条理地、清晰地阐述活动过程,发展学生的观察能力和分析、综合、归纳推理能力,达标率95%。4、激发学生的学习兴趣,让学生体验成功的快乐,达标率100%。5、培养学生的转化思想,渗透辩证法和极限的思想,达标率95%。学习重点圆柱的体积计算方法学习难点圆柱体积计算公式的推导。教具、学具准备:1、师:圆柱体积计算公式推导教具,课件。2、生:削好的圆柱体萝卜或土豆、或圆柱体橡皮泥,小刀。教学设想本节课第一个环节激活旧知、引出新知,采用复习长方体、正方体的体积公式,圆面积计算公式的推导过程,从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。第二个环节自主合作

    11、、探索新知,采用了激趣設疑的方法层层深入,调动同学们学习的热情,激发学生探究的欲望。学生积极合作交流,主动参与到圆柱体积计算公式的推导过程中,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。然后通过例题教学加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。第三个环节巩固练习、拓展提高,采用了分层教学的方法,设计的练习题由易到难,这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。通过本节课的教学,学生在自主探索和合作交流过程中真正理解和掌握数学的知识与技能、特别是让学生获得数学的思想和方法,获得数学活动的经验,同时陶冶了情操。教

    12、法、学法演示法、启发引导;实验、合作探究、尝试练习。评价方案1、通过小组合作实验完成活动检测目标1、4、5的达成。2、通过提问检测目标3、4、5的达成。3、通过评价样题检测目标1、2、4的达成。评价样题1、2、教学过程一、激活旧知,引出新知1、计算下面物体的体积(1)长方体的长20厘米,宽10厘米,高8厘米。(2)正方体棱6分米2、回忆一下圆面积的计算公式是如何推导出来的?学情预设:学生可能说出通过分割、拼合的办法变成长方形或者平行四边形,或者三角形,或者梯形来推导出圆的面积。这时教师要及时总结不论是拼成哪种图形都是把圆转化成已学过面积计算的图形,再根据转化后的图形与圆各部分之间的关系推导出它

    13、的面积。教师(结合课件演示)把一个圆平均分割,再拼合就变成了一个近似的平行四边形,分的份数越多越接近一个长方形。长方形的长,相当于圆周长的一半,长方形的宽相当于圆的半径。因为长方形的面积=长宽,所以,用圆周长的一半半径就可以求出圆的面积,周长一半就等于R,半径是R,所以圆的面积是S=R。设计意图:从转化的思想、方法上为推导圆柱的体积公式做一些铺垫。3、什么叫体积?如何求长方体的体积?如何求正方体的体积?长方体和正方体的通用公式是什么?设计意图:为定义圆柱体的体积,为推导圆柱体的体积公式做知识上的铺垫。板书:长方体的体积底面积高设计意图:原有的基础是后续学习的前提和起点,新知总是在旧知的基础上生

    14、长发展的。这种承上启下的关系决定了我们的教学必须从学生原有的认知结构出发,找准新旧知识的连接点,为新课的学习做好思想方法与知识的铺垫。圆柱体也有体积,说一说什么是圆柱的体积?学生交流后汇报。板书:圆柱体所占空间的大小叫做圆柱的体积。师:这节课,我们就来学习圆柱的体积(板书课题:圆柱的体积)二、自主合作,探索新知1求圆柱体容器中水的体积出示长方体容器:问,这是什么?学情预设:学生可能说出长方体容器。问:怎么求长方体容器中水的体积呢?学情预设:学生可能说出量出它所容纳水的长、宽、高,就可以求出水的体积。 问:如果换成圆柱体容器又如何求其中水的体积呢?学情预设:学生可能说出,把圆柱体容器中的水倒入长

    15、方体容器,量出长方体容器所容纳水的长、宽、高,就可以求出圆柱体容器中水的体积。(演示:把圆柱体容器中的水倒入长方体容器)2.橡皮泥圆柱体的体积(出示橡皮泥做成的圆柱体)问:这是一个什么样的立体图形?问:它是用橡皮泥做成的。你能想办法求出它的体积吗?学情预设:学生可能说出把这个圆柱体捏成一个长方体,从而量出长方体的长、宽、高,求出这个圆柱的体积。3.常用圆柱的体积课件出示圆柱体压路机的滚筒的图片。问:压路机的滚筒是一个很大的的圆柱体,你又如何求出它的体积呢?设计意图:用圆柱体容器所盛的没有形状的水到可以变形的圆柱形橡皮泥,这些都可以转化的办法转化为长方体来求出体积,这一过程就是要逐步渗透把圆柱体

    16、转化为长方体的方法和思想,这样从思想上、方法上给学生一个思维的台阶。当出示圆柱体压路机的滚筒图片后,由于前面的物体是可以变形的,而压路机的滚筒是不可以变形的,学生想不出解决的办法,学生处于愤悱状态,对学生来说解决求压路机的滚筒体积具有很强的挑战性,调动了学生学习的积极性。这样设计,为后面同学们操作、讨论推导圆柱的体积从思想方法上作了进一步的铺垫,并通过构造认知冲突,层层深入,调动同学们学习的热情,激发学生探求的欲望。这样,对学生思想方法的铺垫也已水到渠成。小结:看来我们以上的方法求圆柱的体积有它的局限性,所以必须探究求圆柱体积的一般规律。4.探究规律问:圆我们可以通过分割、拼合转化成已学过的长

    17、方形面积计算公式的图形推导出圆的面积,圆柱体能不能也转化成已学过体积的图形来求出它的体积呢?下面请四人小组讨论,围绕下面几个问题进行讨论、操作:课件出示操作讨论提纲:(1)圆柱体可以转化为什么样的立体图形?(2)转化后的立体图形体积与圆柱的体积大小是否有变化?(3)转化后的形体与与原来圆柱体各部分间的对应关系,推导出圆柱的体积。学生讨论,教师参与小组讨论、点拨、操作。问:下面哪个小组来先进行汇报。各组派代表边汇报边演示。学情预设:学生可能会说圆柱体可以转化为长方体,转化后的长方体不是标准的长方体,只有把圆柱分割的份数多一些,才可以拼成一个标准的长方体。因为长方体是由圆柱体转化而成的,在转化的过

    18、程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积高,所以,圆柱体的体积=底面积高。问:谁还有补充?(学生补充讲解)教师拿两个相同的圆柱体体积演示模型演示,边演示边讲解。师:同学们看,老师这里有两个圆柱体,它们的底相同,高也完全相同,这是两个完全相同的圆柱体。我把其中的一个沿着它的底面直径剪开,两等分、四等分、八等分、十六等分,还可以继续分割,通过分割、拼合,把圆柱体转化成近似的长方体,如果我把它分割的份数越多,拼成的图形就越接近长方体。

    19、因为长方体是由圆柱体转化而成的,在转化的过程中,体积既没有增加,也没有减少,说明求出了转化后长方体的体积,也就相当于求出了圆柱体的体积。结合课件演示讲解。师:长方体的体积等于圆柱体的体积,长方体的底面积等于圆柱的底面积,长方体的高相当于圆柱体的高。因为长方体的体积=底面积高,所以,圆柱体的体积=底面积高。师:如果圆柱的体积用V来表示,底面积用S表示,高用h来表示。如何表示圆柱的体积计算公式呢?(板书:V=Sh)设计意图:学生合作交流,自主探索、经历圆柱体体积计算公式的推导过程,理解和掌握了计算方法,加深了印象,从而体验探索成功的快乐,激发学生的学习兴趣。学会学习方法,获得学习经验。达成目标1、

    20、3、4、5.5、实际应用(1)、师:给你圆柱的底面积和高,你会求圆柱的体积吗?例1、一根圆柱形木料,底面积75平方厘米,高是90厘米,它的体积是多少? 学生独立完成,集体反馈矫正,说思路。(2)、完成评价样题设计意图:通过尝试练习加深对圆柱的体积公式的理解,体会计算公式在实际生活中的应用,发展学生的实践能力。达成目标2、4. 三、巩固练习,拓展提高1、应用公式进行口算:2、3、设计意图:第一层次是已知底面积和高求圆柱体积的口算题,面向全体学生;第二个层次是已知底面半径和高、底面直径和高、底面周长和高,求体积的三种练习题,面向全体学生;第三个层次是求放入水中物体的体积就是求上升的圆柱形水的体积,

    21、面向中上层学生。这样设计的目的,是考虑使差生吃得消,中等生吃得好,尖子生吃得饱。在做练习过程中,一、二层次的练习板演尽量让学困生和中等生去做,给他们展示自己的机会。并及时了解学生信息并根据学生反馈及时调整教学进程,同时对学生存在的问题及时指导。达成目标2、4. 四、全课总结,共谈收获通过今天的学习,你有什么收获?设计意图:师生共同小结,学会了什么?怎样求圆柱的体积?这样起到强化重点的目的。五、课外创新,拓展延伸长方体可以这样放(上、下面朝下),还可以这样放(左、右面朝下),还可哪样放(前、后面朝下)。 上、下面朝下时求出圆柱的体积=底面积高,圆柱的体积还有没篇三:圆柱的体积教学设计及反思学 科

    22、:数学教学内容:最新人教版六年级数学下册第三章圆柱的体积教材分析:圆柱的体积是数学课程标准中“空间与图形”领域内容的一部分。圆柱的体积一课,是在学生已经学过了圆面积公式的推导和长方体、正方体的体积公式的基础上进行学习的,而这节课的顺利学习将为以后圆锥体积的学习铺平道路。学生已经有了把圆形拼成近似的长方形的经验,联想到把圆柱切拼成长方体并不难,但是学生还是喜欢用自己的方法解决问题,所以我给学生创设尽情展示自我的空间,通过自主的学习、合作探究、动手操作,让学生感知立体图形间的一些关系,从而解决生活当中常见的问题。由此、我制定以下三维教学目标:教学目标知识目标:(1)通过学生体验圆柱体体积公式的推导

    23、过程,掌握圆柱的体积公式并能应用公式解决实际问题。(2)通过操作让学生知道知识间的相互转化。能力目标:倡导自主学习、小组合作、动手操作的学习方式,培养学生动手操作的能力,合作交流的意识。从而建立空间观念培养学生的逻辑推理能力。情感目标:让学生感受数学与生活的联系,体验探索数学奥秘的乐趣,培养学生学习数学的积极情感。教学重点:掌握和运用圆柱体积计算公式。教学难点:推导圆柱体积计算公式的过程。教具、学具准备:采用的教具为PPT课件和学具。(圆柱体切割组合学具,各小组自备所需演示的用具)。 教学过程:一、情景引入1、出示圆柱形水杯。(1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你

    24、能用以前学过的方法计算出这些水的体积吗?(3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。2、出示橡皮泥捏成的圆柱体。出示问题:大家想一想用什么办法来求出这个圆柱体橡皮泥的体积呢?(有的学生会想到:老师将它捏成长方体就可以了;还有的学生会想到捏成正方体也可以的!)3、创设问题情景。(课件显示)如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是

    25、思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成任务驱动的探究氛围。)二、新课教学设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的体积。(一)学生动手操作探究1、回顾旧知,帮助迁移(1)教师首先提出具体问题:圆柱体和我们以前学过的哪些几何图形有联系? 启发学生回忆得出:圆柱的上下两个底面是圆形;侧面展开是长方形:所以(2)请大家回忆一下:在学习圆的面积时,我们是怎样将圆转化成已

    26、学过的图形,来推导出圆面积公式的。(通过想象,进一步发展学生的空间观念,由“形”到“体”;同时使学生感悟圆柱的体积与它的底面积和高的联系,通过圆面积推导过程的再现,为实现经验和方法的迁移作铺垫)2、小组合作,探究推导圆柱的体积计算公式。(1)启发猜想:可见,大部分图形公式的推导都可以把所学的转化为学过的。那么你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积可以怎样计算呢? (这是学生会有圆的面积想到把圆柱转化为长方体)老师激励同学们:大家同意他的猜想吗?但我们还是要小心地验证猜想的科学性。都说实践出真知,接下来同学们以小组为单位拿出学具,动手尝试着进行转化,并说一说转化的过程。(2)学生以小

    27、组为单位操作体验。老师引导学生探究: 说说你们小组是如何转化的。这是一个标准的长方体吗?为什么? 如果分割得份数越多,你有什么发现?(电脑演示转化过程) 这是同学们刚才的转化过程。那书上是怎么说的?下面就请同学们打开书,自由读,用直线标记,找出关键句。全班齐读。()现在再请一位同学到前面来演示转化过程。其他同学边观察边思考: 切割后拼成了一个近似于什么的形体?圆柱的体积与拼成后的长方体的体积有什么关系?这个长方体的底面积等于圆柱的什么?长方体的高与圆柱体的高有什么关系?(二)教师课件演示1、课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成16份、32份、64份),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。依次解决问题。 把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。(配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)圆柱的体积=底面积高 字母公式是V=Sh(板书公式)讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:圆柱体积教学设计方案(DOC 15页).docx
    链接地址:https://www.163wenku.com/p-5734133.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库