锐角三角函数-正弦教学设计-人教版(篇)(DOC 11页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《锐角三角函数-正弦教学设计-人教版(篇)(DOC 11页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 锐角三角函数正弦教学设计-人教版篇DOC 11页 锐角三角 函数 正弦 教学 设计 人教版 DOC 11
- 资源描述:
-
1、锐角三角函数正弦(义务教育课程标准人教版九年级下册第二十八章第一节)新疆生产建设兵团建工师第二中学 黄晓玲目标分析(一)教学目标 知识与技能:1、理解锐角正弦的意义,并能运用sinA表示直角三角形中两边的比. 2、能根据正弦概念正确进行计算.过程与方法:1、 经历探索直角三角形中的边与角的关系,培养学生由特殊到一般的演绎推理能力.2、 通过学生自我发现培养学生的自我反思能力,通过提出困惑提升学生发现问题的能力.情感态度价值观:1、在主动参与探索概念的过程中,发展学生的合情推理能力和合作交流、探究发现的意识.2、培养学生独立思考的习惯以及使学生获得成功的体验,建立自信心.(二)教学重点、难点:重
2、点:理解认识正弦(sinA)概念,能用正弦概念进行简单的计算.难点:1、引导学生比较、分析并得出:对任意给定锐角,它的对边与斜边的比值是固定值. 2、正弦概念的理解.突出重点、突破难点的策略从生活实际入手,结合多媒体直观演示,并通过系列探究活动引导学生合作交流,作图、猜想论证,配合由浅入深的练习,使学生不但知道对任意给定锐角,它的对边与斜边的比值是固定值,而且加以论证并会运用.教学方法1.教法学法:本节采用“探究推理发现”模式.教师的教法突出活动的组织设计与方法的引导.学生的学法突出探究、推理与发现. 2.课前准备:教具:多媒体、课件、三角板.学具:三角板等作图工具.教学设计教学环节环节(一)
3、创设情景、引入新知环节(二),探求新知,发现规律环节(三)证明猜想,形成概念环节(五)自我评价,总结反思环节(四)理解概念,应用提升环节(五)自我评价,总结反思环节(一):创设情境、引入新知教师活动1:结合新疆当地实际情况以及书本引例引入本课2:电脑展示教材76页引例.问题 为了绿化荒山,市绿化办打算从位于山脚下的机井房沿着山坡铺设水管,对坡面的绿地进行喷灌现测得斜坡与水平面所成角的度数是30,为使出水口的高度为35m,那么需要准备多长的水管?提出问题:你能将实际问题归结为数学问题吗?学生活动:熟悉背景,从中发现数学问题.同时思考、探求解决问题的途径和方法.设计意图:结合新疆当地实际情况为背景
4、创设情境,引发学生兴趣.ACB培养学生发现数学并将实际问题转化为数学问题的能力;环节(二):探求新知,发现规律1.解决问题隐去引例中的背景材料后,直观显示出图中的RtABC(1) 想一想:你能用数学语言来表述这个实际问题吗?与同伴交流.教师活动:多媒体课件出示问题;了解学生语言组织情况并适时引导;学生活动:组织语言与同伴交流.设计意图:培养学生用数学语言表达的意识,提高数学语言表达能力.(2)出示学生总结并完善后的数学问题:在RtABC中,C90,A30,BC35m,求AB.(3)议一议(出示教材76页的思考):在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?教师活动1:出
5、示问题.2:观察学生解决问题的表现,适时引导.学生活动:应用旧知解决问题.设计意图:让学生初步意识到“比值”以及“固定值”的表达,为得出结论奠定基础.(4)归纳:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.教师活动:引导学生用准确的语言组织.学生活动:独立思考,得出结论.设计意图:让学生从这一情景中得知我们研究的重点不再是“直角三角形中,30角所对的直角边是斜边的一半”,把注意力转移到“直角三角形中,30角的对边与斜边的比值是”.让“比值”的研究首先进入学生的视野,建立了数学模型,为下一环节顺利进行奠定基础.2.类比思考BAC议一议:(出
6、示教材77页的思考)如图,任意画一个RtABC,使C90,A45,计算A的对边与斜边的比 ,你能得出什么结论?教师活动:出示问题;观察基础薄弱的学生的反应或与他们共同讨论.学生活动:思考、解决问题.设计意图:由特殊到一般的过渡,强化了学生对“比值”的关注,点击重点.3.归纳猜想(1)归纳:在一个直角三角形中,如果一个锐角等于30,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于.在一个直角三角形中,如果一个锐角等于45,那么不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于.(2)猜想:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,它的对边与斜边的比也是一个固定
7、值.教师活动:引导学生用准确的语言归纳猜想.学生活动:思考、交流、语言表达.设计意图:让学生体验合理的猜想是数学学习中研究问题的方法之一.为学生提供了自主探究的空间,提高学生的说理能力,增强语言表达能力.环节(三):证明猜想,形成概念1. 在“几何画板”课件制作平台中演示、验证猜想.教师活动:多媒体演示.学生活动:体验成功的快乐.设计意图:运用现代教育手段,让学生感受到自己猜想的正确性的快乐.2.证明猜想教师活动:出示猜想,观察学生的思考方向,引导学生找到证明猜想的方法.(出示教材75页探究)任意画RtABC和RtABC,使得CC90.AA,那么与有什么关系你能解释一下吗?CABBAC学生活动
8、:思考、寻找方法并验证.设计意图:培养学生的论证意识,提高学生自己设计探究活动的能力.通过证明认识到“在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比也是一个固定值”的结论,从而引出“正弦”的概念,突出重点.3.形成概念正弦的概念及表示cb斜边BAC对边a 如图,在RtABC中,C90,我们把锐角A的对边与斜边的比叫做A的正弦(sine),记作sinA,即注意:正弦的三种表示:sinA(省去角的符号)、sin39、sinDEF.教师活动:课件给出概念,解释并强调正弦的符号、符号所表示的意义、正弦的表示方法.学生活动:理解正弦的概念以及正弦的表示.设计意图:概念的引
9、入已是水到渠成,让学生在一系列的问题解决中,经历一个数学概念形成的一般研究过程.环节(四):理解概念、应用提升1、 概念辨析ABC2m1m教师活动:提问:如图:B的正弦怎么表示?出示判断是非:(1)sinA表示“sin”乘以“A” . ( ) (2)如图,sinA= (m) ( )(3)在RtABC中,锐角A的对边和斜边37BCA同时扩大100倍,sinA的值也扩大100倍 ( )(4)如图,A=30,则sinA= . ( ) 学生活动:思考,理解概念.设计意图:通过判断是非加深学生对正弦概念的理解,随着问题的解决更加深了学生对角度与比值的对应关系的关注,进一步的渗透了函数思想. 通过是非判断
10、引导学生注意:sinA不是 sin与A的乘积,而是一个整体.sinA 是线段之间的一个比值, 没有单位.一个角的正弦值与边的大小无关,只与角的大小有关,锐角一旦确定,正弦值随之确定.2、例题讲解教材79页例题一 例1 如图,在RtABC中,C90,求sinA和sinB的值A13BC5AB4C3教师活动:课件出示例1,引导学生相互口述解题方法后,派代表详细叙述,同时出示详细解题过程(板书).学生活动:分析、思考解题的方法,小组交流讨论,互相评议,组织语言叙述解题的过程.设计意图:为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升.巩固正弦的概念,形成能
11、力.规范学生的解题格式,为学生完全独立的解决问题尽可能的排除了障碍.3、巩固新知(1)在RtABC中,C90,BC=2,sinA=,则AC的长是( ) A. B.3 C. D.(2)在正方形网格中,的位置如图所示,则sin的值是多少? (3)(依据认知水平)在RtABC中,C90,AC=2,sinA=.,求AB、BC的长.教师活动:课件出示练习学生活动:分析、独立思考,设计意图:为学生提供自主探究的空间,学生既能独立思考,又能相互合作,在交流中学生解决问题的能力得到了提升.巩固正弦的概念,使学生对知识的理解与应用螺旋上升,形成能力,达到了较高要求.体现了“实际理论实际”的过程,帮助学生形成从实
12、际问题中抽象出数学问题,得出结论,再用来解决实际问题的学习数学的思路,符合新课程标准要求的“实际问题建立模型解释、应用与拓展”的思路.环节(五):自我评价、总结反思问题1:本节课你有哪些收获?教师活动:引导学生思考回答.学生活动:回顾、思考、组织语言回答.设计意图:引导学生回顾自己的学习过程,畅所欲言,加强反思,提炼以及将知识纳入自己的知识结构.帮助学生提炼本节课的重要知识点和必须要掌握的技能-(1)在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是一个固定值.(2)在RtABC中,C90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA.问题2:本节课你
展开阅读全文