诺贝尔化学奖课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《诺贝尔化学奖课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 诺贝尔 化学奖 课件
- 资源描述:
-
1、1993年诺贝尔化学奖Kary mullisPCR 技术The method of polymerase chain reaction 聚合酶链式反应(polymerase chain reaction,PCR)一个非常简单,然而却是很有用的体外DNA聚合反应。PCR技术在生命科学中掀起了一场革命,它可以使人们通过几个小时的试管内的DNA聚合反应,就可将DNA扩增109倍。通过PCR技术不仅可以扩增存在于样品中的DNA,也可以富集混合DNA分子中的任一种。PCR的重要价值在于扩增存在微量而特殊的DNA序列。凯利穆利斯(Kary Mullis 1944)1944年12月28日出生于美国北卡罗来纳
2、州的勒诺。穆利斯在南卡罗来纳州的一个小镇度过了童年,成长环境非常宽松,使他享有充分的自由和空间,这为他性格的形成提供了条件。1962年他在佐治亚州理工学院学习化学,获学士学位;19661972在加州大学伯克利分校攻读生物化学博士学位;接着,先后在堪萨斯大学医学院和加州大学旧金山分校作博士后;1979年任职于Cetus公司,其间发明了PCR技术。19861988年任Xytronyx公司分子生物学部主任。从1987年开始在加州任PCR技术与核酸化学的非官方顾问。他现在是加州奥克兰儿童医院和研究所的知名专家,并为几家公司作科学顾问。19世纪50年代,Khorana合成了寡聚核苷酸,同时,他利用合成的
3、寡聚核苷酸DNA合成酶以及DNA,开发出了使DNA扩增的方法。当时,这一领域的研究人员通常都使用Khorana的DNA扩增技术。可以说,这是一个司空见惯的基本技术,谁也没有去想过这种方法的不便之处。1971年,Khorana曾提出:经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。但由于测序和引物合成的困难,以及70年代基因工程技术的发明使克隆基因成为可能,所以,Khorana的设想被人们遗忘了 因此,30年来没有人去改革这个方法,人人都满足于这个方法。就连Mullis本人在大学做基础研究时,也没有想到要去开发一种更简便的方法,以取代Khorana的
4、方法。1979年,穆利斯进入Cetus公司,从事合成寡聚核苷酸的工作。1981年他担任DNA合成实验室主任,主要任务是加速和优化寡聚核苷酸的合成。80年代初DNA合成仪进入实验室,他对这台原型机提出了许多改进的意见,还试着编写新的程序。由于DNA合成仪的应用使寡核苷酸的合成效率提高10倍。这样,穆利斯能把更多的时间用于计算机上。PCR的点子,也就是在这样的情况下诞生的。1983年4月一个周末的晚上,他驾车与一位同事去乡村别墅在蜿蜒的乡间公路上开着车,他思绪不断,一段DNA反复复制的景像,在他的脑海里冒了出来。他萌发了PCR的构想。整个周末他都在思考着PCR问题,他想DNA合成起始于DNA解链,
5、在一段寡核苷酸作为引物下,聚合酶沿着模板从引物的末端开始进行DNA的扩增,这需要人工加入核苷酸,这一过程在实验室可以实施。他还反复思考能否用两个引物来代替现行的单引物法?如果两个引物的大小不同,结果两条链的序列将同时被测定,而且互为印证;其次,他想能否分两次加入聚合酶,以防止新合成DNA的核苷酸易于脱落和被聚合酶错搭到新生链中的现象。再有,经常使用计算机使他注意到了“循环”,他也想到DNA呈指数增长的趋势;最后他还想到扩增是否具有专一性的问题,因为在合成第一次反应中,人们无法终止聚合酶对引物的扩延。但穆利斯注意到在第二次及后续的链反应中,由第一次反应得到的那些“长反应产物”只能被扩延到另一引物
6、与模板DNA相结合的部位,过了那个位点,扩延反应就无法进行了(没有模板)。所以PCR产物的长度是确定的。他开始用人类神经生长因子作为目标序列进行扩增,没有结果。转而他选择PBR322质粒作为模板,实验中通过缩小反应体积来增加各成分的浓度,并将复性温度降低到32,减少每次加入的聚合酶的量,在10次循环后停止,结果他看到一条浅的带。接着,他又对方法进行了改进,增加几次循环,得到的带还是较浅。他又尝试用50kb碱基对的噬菌体做模板,用限制酶将模板降解为2000碱基对左右,扩增没有成功。他再次更换模板改用实验室合成的100碱基对的寡核苷酸作模板,对珠蛋白基因进行扩增,结果得到扩增产物。这期间Cetus
7、公司成立了PCR小组,经全体成员的共同努力,1984年11月,终于得到与预期分子完全符合的扩增量,首次取得可信的结果,证明了PCR的可行。Mullis最初使用的DNA聚合酶是大肠杆菌DNA聚合酶I的Klenow片段,其缺点是:Klenow酶不耐高温,90会变性失活,每次循环都要重新加。引物链延伸反应在37下进行,容易发生模板和引物之间的碱基错配,其PCR产物特异性较差,合成的DNA片段不均一。此种以Klenow酶催化的PCR技术虽较传统的基因扩增具备许多突出的优点,但由于Klenow酶不耐热,在DNA模板进行热变性时,会导致此酶钝化,每加入一次酶只能完成一个扩增反应周期,给PCR技术操作程序添
8、了不少困难。这使得PCR技术在一段时间内没能引起生物医学界的重视。1988年初,Keohanog改用T4DNA聚合酶进行PCR,其扩增的DNA片段很均一,真实性较高,只有所期望的一种DNA片段。但每循环一次,仍需加入新酶。1988年,Cetus公司的Saiki等从温泉中分离的一株水生嗜热杆菌(thermus aquaticus)中提取到一种耐热DNA聚合酶,此酶最大特点是耐高温,不需每次加入,大大提高了扩增片段特异性和扩增效率。此酶被命名为TagDNA聚合酶。此酶的发现使PCR广泛的被应用。原理简介:PCR 技术的基本原理是DNA的半保留复制。由于DNA复制是半保留的,两条链都可以作为模板。在
展开阅读全文