最新高中数学必修五全套教案(DOC 62页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新高中数学必修五全套教案(DOC 62页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新高中数学必修五全套教案DOC 62页 最新 高中数学 必修 全套 教案 DOC 62 下载 _其他_数学_高中
- 资源描述:
-
1、精品文档探索研究 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图11-2,在RtABC中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有,又, 则 b c从而在直角三角形ABC中, C a B(图11-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图11-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则, C同理可得, b a从而 A c B (图11-3)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即理解定
2、理(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,;(2)等价于,从而知正弦定理的基本作用为:已知三角形的任意两角及其一边可以求其他边,如;已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如。一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。例题分析例1在中,已知,cm,解三角形。解:根据三角形内角和定理,;根据正弦定理,;根据正弦定理,评述:对于解三角形中的复杂运算可使用计算器。例2在中,已知cm,cm,解三角形(角度精确到,边长精确到1cm)。解:根据正弦定理,因为,所以,或 当时, , 当时, ,补充练习已知ABC中
3、,求(答案:1:2:3)(2)正弦定理的应用范围:已知两角和任一边,求其它两边及一角;已知两边和其中一边对角,求另一边的对角。联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边c。由于涉及边长问题,从而可以考虑用向量来研究这个问题。 A如图11-5,设,那么,则 C B 从而 (图11-5)同理可证 于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?(由学生推出)从余弦定理,又可得到以下
4、推论:理解定理从而知余弦定理及其推论的基本作用为:已知三角形的任意两边及它们的夹角就可以求出第三边;已知三角形的三条边就可以求出其它角。思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?(由学生总结)若ABC中,C=,则,这时由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。例题分析例1在ABC中,已知,求b及A解:=cos=求可以利用余弦定理,也可以利用正弦定理:解法一:cos例2在ABC中,已知,解三角形解:由余弦定理的推论得:cos;cos;补充练习在ABC中,若,求角A(答案:A=120).课时小结
5、(1)余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;(2)余弦定理的应用范围:已知三边求三角;已知两边及它们的夹角,求第三边。随堂练习1(1)在ABC中,已知,试判断此三角形的解的情况。(2)在ABC中,若,则符合题意的b的值有_个。(3)在ABC中,如果利用正弦定理解三角形有两解,求x的取值范围。(答案:(1)有两解;(2)0;(3)2在ABC中,已知,判断ABC的类型。分析:由余弦定理可知(注意:)解:,即,。随堂练习2(1)在ABC中,已知,判断ABC的类型。 (2)已知ABC满足条件,判断ABC的类型。 (答案:(1);(2)ABC是等腰或直角三角形)2.在AB
6、C中,面积为,求的值分析:可利用三角形面积定理以及正弦定理解:由得,则=3,即,从而.课堂练习(1)在ABC中,若,且此三角形的面积,求角C(2)在ABC中,其三边分别为a、b、c,且三角形的面积,求角C(答案:(1)或;(2).课时小结(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;(2)三角形各种类型的判定方法;(3)三角形面积定理的应用。.课后作业(1)在ABC中,已知,试判断此三角形的解的情况。(2)设x、x+1、x+2是钝角三角形的三边长,求实数x的取值范围。(3)在ABC中,判断ABC的形状。(4)三角形的两边分别为3cm,5cm,它们所夹的角的余弦为
7、方程的根,求这个三角形的面积。例1、如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)解:在ABC中,ABC=180- 75+ 32=137,根据余弦定理,AC= = 113.15根据正弦定理, = sinCAB = = 0.3255,所以 CAB =19.0, 75- CAB =56.0答:此船应该沿北偏东56.1的方向航行,需要航行113.15n mile补充例
8、2、某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?解:如图,设该巡逻艇沿AB方向经过x小时后在B处追上走私船,则CB=10x, AB=14x,AC=9,ACB=+= (14x) = 9+ (10x) -2910xcos化简得32x-30x-27=0,即x=,或x=-(舍去)所以BC = 10x =15,AB =14x =21,又因为sinBAC =BAC =38,或BAC =141(钝角不合题意,舍去),38+=83答:
9、巡逻艇应该沿北偏东83方向去追,经过1.4小时才追赶上该走私船.评注:在求解三角形中,我们可以根据正弦函数的定义得到两个解,但作为有关现实生活的应用题,必须检验上述所求的解是否符合实际意义,从而得出实际问题的解.课时小结解三角形的应用题时,通常会遇到两种情况:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之。(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解。例7、在ABC中,根据下列条件,求三角形的面积S(精确到0.1cm)(1)已知a=14.8cm,c=23.5cm,B=148.5;(2)已知B=62
10、.7,C=65.8,b=3.16cm;(3)已知三边的长分别为a=41.4cm,b=27.3cm,c=38.7cm解:(1)应用S=acsinB,得 S=14.823.5sin148.590.9(cm)(2)根据正弦定理, = c = S = bcsinA = bA = 180-(B + C)= 180-(62.7+ 65.8)=51.5 S = 3.164.0(cm)(3)根据余弦定理的推论,得cosB = = 0.7697sinB = 0.6384应用S=acsinB,得S 41.438.70.6384511.4(cm)例3、在ABC中,求证:(1)(2)+=2(bccosA+cacosB
11、+abcosC)证明:(1)根据正弦定理,可设 = = = k显然 k0,所以 左边= =右边(2)根据余弦定理的推论, 右边=2(bc+ca+ab) =(b+c- a)+(c+a-b)+(a+b-c)=a+b+c=左边变式练习1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面积S提示:解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数。答案:a=6,S=9;a=12,S=18.课时小结利用正弦定理或余弦定理将已知条件转化为只含边的式子或只含角的三角函数式,然后化简并考察边或角的关系,从而确定三角形的形状。特别是有些条件既可用正弦定理也可用余弦定理甚至可以两者混用。 数列的
12、定义:按一定次序排列的一列数叫做数列.注意:数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,第n 项,.例如,上述例子均是数列,其中中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项.数列的一般形式:,或简记为,其中是数列的第n项结合上述例子,帮助学生理解数列及项的定义. 中,这是一个数列,它的首项是“1”,“”是这个数列的第“3”项,等等下面我们再来看这些数列
13、的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列,第一项与这一项的序号有这样的对应关系:项 序号 1 2 3 4 5这个数的第一项与这一项的序号可用一个公式:来表示其对应关系即:只要依次用1,2,3代替公式中的n,就可以求出该数列相应的各项结合上述其他例子,练习找其对应关系 数列的通项公式:如果数列的第n项与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意:并不是所有数列都能写出其通项公式,如上述数列;一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0,它
14、的通项公式可以是,也可以是.数列通项公式的作用:求数列中任意一项;检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第 项,又是这个数列中所有各项的一般表示通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项5.数列与函数的关系数列可以看成以正整数集N*(或它的有限子集1,2,3,n)为定义域的函数,当自变量从小到大依次取值时对应的一列函数值。反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4)有意义,那么我们可以得到一个数列f(1)、 f(2)、 f(3)、 f(4),f(n),6数列的分类:1)根据数
15、列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6。是有穷数列无穷数列:项数无限的数列.例如数列1,2,3,4,5,6是无穷数列2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列。递减数列:从第2项起,每一项都不大于它的前一项的数列。常数数列:各项相等的数列。摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列补充练习:根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,; (2) , , , , , ; (3) 0, 1, 0, 1, 0, 1,; (4) 1, 3, 3, 5, 5, 7
16、, 7, 9, 9, ; 解:(1) 2n1; (2) ; (3) ; (4) 将数列变形为10, 21, 30, 41, 50, 61, 70, 81, , n;1、 通项公式法如果数列的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。如数列 的通项公式为 ; 的通项公式为 ; 的通项公式为 ;2、 图象法启发学生仿照函数图象的画法画数列的图形具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个
17、数取决于数列的项数从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势3、 递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题 观察钢管堆放示意图,寻其规律,建立数学模型 模型一:自上而下: 第1层钢管数为4;即:141+3 第2层钢管数为5;即:252+3 第3层钢管数为6;即:363+3 第4层钢管数为7;即:474+3 第5层钢管数为8;即:585+3 第6层钢管数为9;即:696+3 第7层钢管数为10;即:7107+3若用表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且n7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很
18、快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。即;依此类推:(2n7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式递推公式也是给出数列的一种方法。如下数字排列的一个数列:3,5,8,13,21,34,55,89递推公式为:数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请
19、学生回忆函数的表示法:列表法,图象法,解析式法相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,用 表示第 项,依次写出成为4、列表法简记为 范例讲解例3 设数列满足写出这个数列的前五项。解:分析:题中已给出的第1项即,递推公式:解:据题意可知:,补充例题例4已知, 写出前5项,并猜想 法一: ,观察可得 法二:由 即 补充练习1根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式(1) 0, (2n1) (nN);(2) 1, (nN);(3) 3, 32 (nN). 解:(1) 0, 1, 4, 9, 16, (n1);(2) 1, , , ;(3)
展开阅读全文