圆全章教案讲解(DOC 31页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《圆全章教案讲解(DOC 31页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆全章教案讲解DOC 31页 圆全 教案 讲解 DOC 31
- 资源描述:
-
1、 圆1.1圆的基本元素教学目标:使学生理解圆、等圆、等弧、圆心角等概念,让学生深刻认识圆中的基本概念。重点难点: 1、重点:圆中的基本概念的认识。2、难点:对等弧概念的理解。教学过程:一、圆是如何形成的?请同学们画一个圆,并从画圆的过程中阐述圆是如何形成的。如右图,线段OA绕着它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形。同学们想一想,如何在操场上画出一个很大的圆?说说你的方法。由以上的画圆和解答问题的过程中,让同学们思考圆的位置是由什么决定的?而大小又是由谁决定的?(圆的位置由圆心决定,圆的大小由半径长度决定)二、圆的基本元素 问题:据统计,某个学校的同学上学方式是,有的同学
2、步行上学,有的同学坐公共汽车上学,其他方式上学的同学有,请你用扇形统计图反映这个学校学生的上学方式。我们是用圆规画出一个圆,再将圆划分成一个个扇形,右上图28.1.1就是反映学校学生上学方式的扇子形统计图。如图28.1.2,线段OA、OB、OC都是圆的半径,线段AB为直径,.这个以点O为圆心的圆叫作“圆O”,记为“O”。线段AB、BC、AC都是圆O中的弦,曲线BC、BAC都是圆中的弧,分别记为BC()、BAC(),其中像弧BC()这样小于半圆周的圆弧叫做劣弧,像弧BAC()这样的大于半圆周的圆弧叫做优弧。AOB、AOC、BOC就是圆心角。结合上面的扇形统计图,进一步阐述圆心角、优弧、劣弧等圆中
3、的基本元素。三、课堂练习: 1、直径是弦吗?弦是直径吗? 2、半圆是弧吗?弧是半圆吗? 3、半径相等的两个圆是等圆,而两段弧相等需要什么条件呢? 4、说出右图中的圆心解、优弧、劣弧。 5、直径是圆中最长的弦吗?为什么?四、小结:本节课我们认识了圆中的一些元素,同学应能从具体的图形中对这些元素加以识别。五、作业: 1、如图,AB是O的直径,C点在O上,那么,哪一段弧是优弧,哪一段弧是劣弧? 2、经过A、B两点的圆的几个?它们的圆心都在哪里?3、长方形的四个顶点在以 为圆心,以 为半径的圆上。4、如图,已知AB是O的直径,AC为弦,ODBC,交AC于D,求OD的长。5、已知:如图,OA、OB为O的
4、半径,C、D分别为OA、OB的中点,试说明AD=BC。1.2圆的对称性教学目标:使学生知道圆是中心对称图形和轴对称图形,并能运用其特有的性质推出在同一个圆中,圆心角、弧、弦之间的关系,能运用这些关系解决问题,培养学生善于从实验中获取知识的科学的方法。重点难点: 1、重点:由实验得到同一个圆中,圆心角、弧、弦三者之间的关系。2、难点:运用同一个圆中,圆心角、弧、弦三者之间的关系解决问题。教学过程:一、由问题引入新课:要同学们画两个等圆,并把其中一个圆剪下,让两个圆的圆心重合,使得其中一个圆绕着圆心旋转,可以发现,两个圆都是互相重合的。如果沿着任意一条直径所在的直线折叠,圆在这条直线两旁的部分会完
5、全重合。由以上实验,同学们发现圆是中心对称图形吗?对称中心是哪一点?圆不仅是中心对称圆形,而且还是轴对称图形,过圆心的每一条直线都是圆的对称轴。二、新课 1、同一个圆中,相等的圆心角所对的弧相等、所对的弦相等。 垂直于弦的直径平分弦,并且平分弦所对的两条弧。实验1、将图形28.1.3中的扇形AOB绕点O逆时针旋转某个角度,得到图28.1.4中的图形,同学们可以通过比较前后两个图形,发现,。AB=AB实质上,确定了扇形AOB的大小,所以,在同一个圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等。问题:在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦是否相等呢?在同一个圆中,如果弦相等,
6、那么所对的圆心角,所对的弧是否相等呢? 实验2、如图28.1.7,如果在图形纸片上任意画一条垂直于直径CD的弦AB,垂足为P,再将纸片沿着直径CD对折,比较AP与PB、AC()与CB(),你能发现什么结论? 显然,如果CD是直径,AB是O中垂直于直径的弦,那么,AC=BC,AD=BD。请同学们用一句话加以概括。 ( 垂直于弦的直径平分弦,并且平分弦所对的两条弧)2、同一个圆中,圆心角、弧、弦之间的关系的应用。(1)思考:如图,在一个半径为6米的圆形花坛里,准备种植六种不同颜色的花卉,要求每种花卉的种植面积相等,请你帮助设计种植方案。(2)如图28.1.5,在O中,求的度数。3、课堂练习:练习1
7、、2、3三、课堂小结本节课我们通过实验得到了圆不仅是中心对称图形,而且还是轴对称图形,而由圆的对称性又得出许多圆的许多性质,即(1)同一个圆中,相等的圆心角所对弧相等,所对的弦相等。(2)在同一个圆中,如果弧相等,那么所对的圆心角,所对的弦相等。(3)在同一个圆中,如果弦相等,那么所对的圆心角,所对的弧相等。(4)垂直于弦的直径平分弦,并且平分弦所对的两条弧。四、作业 习题 1、2、3、4、5.1.3圆周角教学目标:使学生知道什么样的角是圆周角,了解圆周角和圆心角的关系,直径所对的圆周角的特征;并能应用圆心角和圆周角的关系、直径所对的圆周角的特征解决相关问题,同时,通过对圆心角和圆周角关系的探
8、索,培养学生运用已有知识,进行实验、猜想、论证,从而得到新知。重点难点: 1、重点:认识圆周角,同一条弧的圆周角和圆心角的关系,直径所对的圆周角的特征。2、难点:发现同一条弧的圆周角和圆心角的关系,利用这个关系进一步得到其他知识,运用所得到的知识解决问题。教学过程:一、认识圆周角如下图,同学们能找到圆心角吗?它具有什么样的特征?(顶点在圆心,两边与圆相交的角叫做圆心角),今天我们要学习圆中的另一种特殊的角,它的名称叫做圆周角。究竟什么样的角是圆周角呢?像图(3)中的解就叫做圆周角,而图(2)、(4)、(5)中的角都不是圆周角。同学们可以通过讨论归纳如何判断一个角是不是圆周角。(顶点在圆上,两边
9、与圆相交的角叫做圆周角)练习:试找出图中所有相等的圆周角。二、圆周角的度数 探究半圆或直径所对的圆周角等于多少度?而的圆周角所对的弦是否是直径? 如图28.1.9,线段AB是O的直径,点C是O上任意一点(除点A、B), 那 么,ACB就是直径AB所对的圆周角.想想看,ACB会是怎么样的角?为什么呢? 启发学生用量角器量出的度数,而后让同学们再画几个直径AB所对的 圆周角,并测量出它们的度数,通过测量,同学们感性认识到直径所对的圆周角等于(或直角),进而给出严谨的说明。证明:因为OAOBOC,所以AOC、BOC都是等腰三角形,所以OACOCA,OBCOCB. 又OACOBCACB180,所以AC
10、BOCAOCB90.因此,不管点C在O上何处(除点A、B),ACB总等于90,即半圆或直径所对的圆周角都相等,都等于90(直角)。反过来也是成立的,即90的圆周角所对的弦是圆的直径三、探究同一条弧所对的圆周角和圆心角的关系 1、分别量一量图28.1.10中弧AB所对的两个圆周角的度数比较一下. 再变动点C在圆周上的位置,看看圆周角的度数有没有变化. 你发现其中有什么规律吗?(2) 分别量出图28.1.10中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么? 我们可以发现,圆周角的度数没有变化. 并且圆周角的度数恰好为同弧所对的圆心角的度数的一半。由上述操作可以猜想:在一个圆中,一条弧所对
11、的任意一个圆周角的大小都等于该弧所对的圆心角的一半。为了验证这个猜想,如图28.1.11所示,可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:(1) 折痕是圆周角的一条边,(2) 折痕在圆周角的内部,(3) 折痕在圆周角的外部。我们来分析一下第一种情况:如图28.1.11(1),由于OAOC,因此 AC,而AOB是OAC的外角,所以 CAOB.对(2)、(3),有同样的结论.(让同学们把推导的过程写出来),由以上的猜想和推导可以得到:一条弧所对的圆周角等于该弧所对的圆心角的一半。思考: 1、在同一个圆中,同弧或等弧所对的圆周角相等吗?为什么?相等的圆周角所对的弧相等吗,为什
12、么?2、你能找出右图中相等的圆周角吗?3、这是一个圆形的零件,你能告诉我,它的圆心的位置吗?你有什么简捷的办法?4、如图,如图28.1.12,AB是O的直径,A80求ABC的度数5、在圆中,一条弧所对的圆心角和圆周角分别为(2x100)和(5x30),求这条弧所对的圆心角和圆周角的度数.四、小结本节课我们一同探究了同圆或等圆中,一条弧所对的圆周角等于这条弧所对的圆心角的一半;由这个结论进一步得到:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半; 相等的圆周角所对的弧相等;半圆或直径所对的圆周角都相等,都等于90(直角)。90(直角)的圆周角所对的弦是圆的直径等结论,希望
13、同学们通过复习,记住这些知识,并能做到灵活应用他们解决相关问题。四、作业:习题 6、72.1点与圆的位置关系教学目标:使学生能够用数量关系来判断点与圆的位置关系,掌握不在一条直线上的三点确定一个圆,能画出三角形的外接圆,求出特殊三角形的外接圆的半径,渗透方程思想。重点难点: 1、重点:用数量关系判断点和圆的位置关系,用尺规作三角形的外接圆,求直角三角形、等边三角形和等腰三角形的半径。2、难点:运用方程思想求等腰三角形的外接圆半径。教学过程:一、用数量关系来判断点和圆的位置关系同学们看过奥运会的射击比赛吗?射击的靶子是由许多圆组成的,射击的成绩是由击中靶子不同位置所决定的;右图是一位运动员射击1
14、0发子弹在靶上留下的痕迹。你知道这个运动员的成绩吗?请同学们算一算。(击中最里面的圆的成绩为10环,依次为9、8、1环)这一现象体现了平面上的点与圆的位置关系,如何判断点与圆的位置关系呢?我们知道圆上的所有点到圆心的距离都等于半径,若点在圆上,那么这个点到圆心的距离等于半径,若点在圆外,那么这个点到圆心的距离大于半径,若点在圆内,那么这个点到圆心的距离小于半径。如图28.2.1,设O的半径为r,A点在圆内,B点在圆上,C点在圆外,那OAr, OBr, OCr反过来也成立,即若点A在O内 若点A在O上 若点A在O外 思考与练习1、O的半径,圆心O到直线的AB距离。在直线AB上有P、Q、R三点,且
15、有,。P、Q、R三点对于O的位置各是怎么样的?2、中,对C点为圆心,为半径的圆与点A、B、D的位置关系是怎样的?二、不在一条直线上的三点确定一个圆问题与思考:平面上有一点A,经过A点的圆有几个?圆心在哪里?平面上有两点A、B,经过A、B点的圆有几个?圆心在哪里?平面上有三点A、B、C,经过A、B、C三点的圆有几个?圆心在哪里?。 从以上的图形可以看到,经过平面上一点的圆有无数个,这些圆的圆心分布在整个平面;经过平面上两点的圆也有无数个,这些圆的圆心是在线段AB的垂直平分线上。经过A、B、C三点能否画圆呢?同学们想一想,画圆的要素是什么?(圆心确定圆的位置,半径决定圆的大小),所以关键的问题是定
16、其加以和半径。如图28.2.4,如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,而经过B、C两点所画的圆的圆心在线段BC的垂直平分线上,此时,这两条垂直平分线一定相交,设交点为O,则OAOBOC,于是以O为圆心,OA为半径画圆,便可画出经过A、B、C三点的圆思考:如果A、B、C三点在一条直线上,能画出经过三点的圆吗?为什么?即有:不在同一条直线上的三个点确定一个圆也就是说,经过三角形三个顶点可以画一个圆,并且只能画一个经过三角形三个顶点的圆叫做三角形的外接圆三角形外接圆的圆心叫做这个三角形的外心这个三角形叫做这个圆的内接三角形三角形的外心就是三角形三
17、条边的垂直平分线的交点,它到三角形三个顶点的距离相等。思考:随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请举例说明。三、例题讲解例1、如图,已知中,若, ,求的外接圆半径。例2、如图,已知等边三角形ABC中,边长为,求它的外接圆半径。例3、如图,等腰中,求外接圆的半径。四、小结本节课我们学习了用数量关系判断点和圆的位置关系和不在同一直线上的三点确定一个圆,求解了特殊三角形直角三角形、等边三角形、等腰三角形的外接圆半径,在求解等腰三角形外接圆半径时,运用了方程的思想,希望同学们能够掌握这种方法,领会其思想。五、作业 习题 1、2、3、42.2直线与圆的位置关系教
18、学目标:使学生掌握直线与圆的位置关系,能用数量来判断直线与圆的位置关系。重点难点:用数量关系(圆心到直线的距离)判断直线与圆的位置关系即是教学重点又是教学难点。教学过程:一、用移动的观点认识直线与圆的位置关系1、同学们也许看过海上日出,如右图中,如果我们把太阳看作一个圆,那么太阳在升起的过程中,它和海平面就有右图中的三种位置关系。2、请同学在纸上画一条直线,把硬币的边缘看作圆,在纸上移动硬币,你能发现直线与圆的公共点个数的变化情况吗?公共点个数最少时有几个?最多时有几个?二、数量关系判断直线与圆的位置关系从以上的两个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:如果一条直线与一个
19、圆没有公共点,那么就说这条直线与这个圆相离,如图28.2.6(1)所示 如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切,如图28.2.6(2)所示此时这条直线叫做圆的切线,这个公共点叫做切点如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,如图28.2.6(3)所示此 时这条直线叫做圆的割线如何用数量来体现圆与直线的位置关系呢?如上图,设O的半径为r,圆心O到直线l的距离为d,从图中可以看出:若 直线l与O相离;若 直线l与O相切;若 直线l与O相交; 所以,若要判断圆与直线的位置关系,必须对圆心到直线的距离与圆的半径进行比较大小,由比较的结果得出结论。三、练习
20、与例题练习1、已知圆的半径等于5厘米,圆心到直线l的距离是:(1)4厘米;(2)5厘米;(3)6厘米.直线l和圆分别有几个公共点?分别说出直线l与圆的位置关系。练习2、已知圆的半径等于10厘米,直线和圆只有一个公共点,求圆心到直线的距离.练习3、如果O的直径为10厘米,圆心O到直线AB的距离为10厘米,那么O 与直线AB有怎样的位置关系?例1、如图,在以O为圆心的两个同心圆中,大圆的直径AB交小圆于点C、D,大圆的弦EF与小圆相切于点C,ED交小圆于点G, 设大圆的半径为,求小圆的半径和EG的的长度。 三、小结本节课我们学习了直线与圆的位置关系,当我们判断直线与圆的位置关系时,应该用数量关系(
展开阅读全文