轴对称培优练习教案概要(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《轴对称培优练习教案概要(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称培优练习教案概要DOC 19页 轴对称 练习 教案 概要 DOC 19
- 资源描述:
-
1、 初中数学辅导练习知能目标:1理解轴对称的概念了解两个图形成轴对称性的性质,了解轴对称图形的性质2理解线段垂直平分线的性质及判定3.利用轴对称的性质作出成轴对称的图形4了解等腰三角形的概念,等腰三角形的性质,理解并掌握等腰三角形的判定定理及推论轴对称(一) 典型例题讲解:培优专题 等腰三角形等腰三角形是轴对称图形,底边上的高所在直线是它的对称轴,对于某些含有(或隐含)等腰三角形条件的问题,可以作等腰三角形底边上的高或构建等腰三角形、等边三角形找到解决问题的途径判定一个三角形为等腰三角形的基本方法是:从定义入手,证明一个三角形的两条边相等;从角入手,证明一个三角形的两个角相等, 实际解题中的一个
2、常用技巧是,构造等腰三角形,进而利用等腰三角形的性质为解题服务,常用的构造方法有: 1“角平分线+平行线”构造等腰三角形; 2“角平分线+垂线”构造等腰三角形; 3用“垂直平分线”构造等腰三角形; 4用“三角形中角一个外角是不相邻内角的2倍关系”构造等腰三角形 例1 如图1-1,ABC中,AB=BC,M、N为BC边上两点,且BAM=CAN,MN=AN,求MAC的度数 分析 AB=AC,MN=AN可知ABC和AMN均为等腰三角形,充分利用等腰三角形的性质寻找所求角间的关系 解:设BAM=CAN=,AMN=, MN=AN, AMN=MAN= 1-1 设ABC=, 在ABC中, ABC+BCA+CA
3、B=180, 由于BCA=CAB=2+, 4+2+=180 在ABM中,=+, 4+2+(-)=180 即3(+)=180+=60,故MAC=60 练习1 1如图1-2,已知ABC中,AB=AC,AD=AE,BAE=30,则DEC等于( )A75 B10 C12.5 D18 1-2 2如图1-3,AA、BB分别是ABC的外角EAB和CBD的平分线,且AA=AB=BB,A、B、C在一直线上,则ACB的度数是多少? 1-33如图1-4,等腰三角形ABC中,AB=BC,A=20D是AB边上的点,且AD=BC,连结CD,则BDC=_1-4 例2 如图1-5,D是等边三角形ABC的AB边延长线上一点,B
4、D的垂直平分线HE交AC延长线于点E,那么CE与AD相等吗?试说明理由 分析 要说明似乎没有任何关系的两条线段相等,往往需要做一些工作,如添加辅助线,构造全等三角形等,从而达到解决问题的目的 解:延长AD到F,使AF=EF, 1-5 ABC是等边三角形, AB=AC,A=60 AEF是等边三角形 EA=EF,AEF=A=60 又EH垂直平分BD, EB=ED,EBD=EDB EADEFB AD=BF 又BF=AF-AB=AE-AC=CE,AD=CE 练习21已知如图1-6,在ABC中,AB=CD,D是AB上一点,DEBC,E为垂足,ED的延长线交CA的延长线于点F,判断AD与AF相等吗? 1-
5、6 1-7 1-8 2如图1-7,ABC是等腰直角三角形,BAC=90,点D是ABC内一点,且DAC=DCA=15,则BD与BA的大小关系是( ) ABDBA BBD”或“”或“”)1-16 例5 已知:如图1-17,ABC中,AB=AC,CE是AB边上的中线,延长AB到D,使BD=AB,那么CE是CD的几分之几? 分析 延长线段到倍长,再证明三角形全等,往往是说明线段倍分关系的重要途径和必要手段 解:延长CE到F,使EF=CE,连结BF,CE是AB的中线,AE=EB 又FEB=AEC, 1-17 EBFEAC,EBF=A BF=AC=BD 在FBC和DBC中, FB=BD,BC=BC FBC
6、=FBE+EBC =A+ACB DBC=A+ACB FBC=DBC BCFBCDCF=CD=2CE,故CE=CD 练习51如图1-18,D、E分别是等边三角形ABC两边BC、AC上的点,且AE=CD,连结BE、AD交于点P过B作BQAD于Q,请说明BP是PQ的2倍1-182如图1-19,在ABC中,BAC=90,AB=AC,BE平分ABC,CEBE,那么CE是BD的几分之几?1-19 3已知:如图1-20,在ABC中,AB=AC,AD和BE是高,它们相交于H,且AE=BE,那么AH是BD的_倍1-20 答案:练习11解:设DEC=x, AD=AE, ADE=AED x=AEC-ADE=(B+3
7、0)-ADE=(B+30)-(C+x) AB=AC,B=C 2x=30,x=15,故选C2解:AB=BB, BAB=BBA,BBD=BAB+BBA=2BAB 又CBB=DBB, ACB=CBB+CBB=3CAB 设CAB=x,ACB=3x,CBD=4x,又AA=AB, A=ABA=CBD=4x AA平分EAB AAB=(180-x) 又AAB=180-(A+ABA)=180-8x (180-x)=180-8x x=12,故ACB=363解:如图,作AEDBAC,连结EC 则AED=BAC=20, DAE=ADE=B=ACB=80 CAE=DAE-BAC=80-20=60 又AB=AE=AC,
8、ACE是正三角形,AE=EC=ED DEC=AEC-AED=40 EDC=(180-DEC)=70 BDC=180-(ADE+EDC)=30练习2 1解:AB=AC,B=C DEBC,DEB=FEC=90 在RtDEB与RtFEC中, B=C,BDE=F FDA=BDE, FDA=F,故AD=AF2解:以AD为边在ADB内作等边ADE,连结BE 则1=2=3=60 AE=ED=AD DAC=15, EAB=90-1-DAC=15 DAC=EAB 又DA=AE,AB=AC, EABDAC EBA=DCA=15 BEA=180-EBA-EAB=150 BED=360-BEA-AED=150 BEA
9、=BED 又EB=EB,AE=ED BEABED,BD=BA 故选择C3解:延长AD到G,使DG=AD,连结BG, BD=DC,BDG=CDA,AD=DG, ADCBDE AC=BG,G=EAF, 又BE=AC,BE=BG G=BED,而BED=AEF, AEF=AFE,故FA=FE练习31解:ABC是等边三角形, AB=BC=CA ABC=ACB=BAC=60 又BD=AF=CE, ABDBCECAF 1=2=3 BAC-1=ABC-2=ACB-3 即CAK=ABG=BCH 又AB=BC=CA, ABGBCHCAK AGB=BHC=CKA 即KGH=GHK=GKH 故GKH是等边三角形2解:
展开阅读全文