电工电子技术教案(完整版)(DOC 63页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《电工电子技术教案(完整版)(DOC 63页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电工电子技术教案完整版DOC 63页 电工 电子技术 教案 完整版 DOC 63
- 资源描述:
-
1、电工电子技术 教案第 一 讲教学章节:第一章 电路和电路元件 1.11.2 电路与电路模型,电路的基本物理量教学要求:1、熟悉强电和弱电电路;2、掌握电路元件及其模型;3、掌握电流、电压及其参考方向;4、了解功率正负的含义;5、掌握电阻、电感和电容元件的伏安特性。教学重点:电路元件及其模型,电流、电压及其参考方向,电阻、电感和电容元件的伏安特性。教学难点:电流、电压及其参考方向;电感和电容元件的伏安特性。教学方法与手段:启发式讲授,讨论发言,多媒体,板书。教学内容与进程:一、引入:电路1. 电路及其组成电源 中间环节 负载2.电路的作用 传输、分配、转换电能;-能量领域-“强电”电路 传送、处
2、理、储存信号。-信息领域-“弱电”电路二、电路元件和电路模型电路模型:从实际电路中抽象出来的、由理想元件组成的电路。理想元件是假想元件,具有单一的电磁性质,具有精确的定义与相应的数学模型。理想电阻、理想电感、理想电容三、电流、电压及其参考方向1、电流及其参考方向 电流的定义:单位时间内通过导体横截面的电荷量。直流电流和交流电流 电流的实际方向与参考方向:正电荷移动的方向为电流的实际方向。为计算而假设的方向,称为参考方向。参考方向可以任意设定。参考方向可以用箭头表示,也可以用双下标表示,如 Iab。电流的参考方向与实际方向相同,电流为正值;与实际方向相反则为负值。例:设下图电流表达式为判断 t
3、为0.001s和0.006s时的电流实际方向。2、电压及其参考方向(1)电压的定义:电场力把单位正电荷从a点移动倒b点所做的功,称为a、b两点之间的电压,即dW 0时,u 0,说明a点电位高于b点电位,正电荷在移动过程中失去能量;dW 0时,u 0,元件或电路在吸收功率,等效为负载;若p 0,元件或电路在发出功率,等效为电源。1.2 电阻、电感和电容元件 五、电阻元件伏安特性在任一时刻,电阻上的电压只取决于这一时刻流过的电流,与以前的电流大小无关。功率电阻是一个纯耗能元件。实际电阻元件是有额定功率的。消耗的功率不允许超过额定值,否则元件有损坏的危险。有线性电阻和非线性电阻。六、电感元件伏安特性
4、 电感元件为动态元件,只有变化的电流才会产生电压。在直流电路中,电感相当于短路线。功率 电感不耗能可以储能,但不产生能量。电感是一个无源元件。七、电容元件伏安特性 电容是一个动态元件,直流电路中电容相当于开路。功率电容不耗能可以储能,但不产生能量。电容是一个无源元件。八、实际元件的主要参数及电路模型作业:1.1.1 1.2.2 1.2.5第 二 讲教学章节:第一章 电路和电路元件 1.31.4 独立电源元件,二极管教学要求:1、熟悉电压源和电流源;2、掌握两种电源模型的等效;3、熟练掌握二极管的特性;4、掌握稳压二极管、发光二极管和光电二极管的特点。教学重点:两种电源模型的等效,二极管的特性,
5、稳压二极管、发光二极管和光电二极管的特点。教学难点:两种电源模型的等效;二极管的特性;稳压二极管工作状态。教学方法与手段:启发式讲授,联系实际,多媒体,板书。教学内容与进程:一、引入:电压源和电流源1、电压源 两端的电压仅由自身决定,与流过的电流及外电路无关。 流过的电流由外电路决定。电压源置零,等效于两端短路。电压源不允许外电路短路。2、电流源 电流源的电流仅由自身决定,与两端的电压无关。 两端的电压由外电路决定。电流源置零,等效于两端开路。电流源不允许外电路开路。二、实际电源的模型1、电压源模型2、电流源模型3、两种电源模型的等效1.4 二极管 三、PN结及其单相导电性二极管的结构和电路符
6、号如图所示,VD是文字符号。 PN结加正向电压四、二极管的主要特性和主要参数(1)正偏导通(2)反偏截止(3)二极管的伏安特性正向特性:二极管正向电压超过某一数值时电流开始快速增长,对应的电压称为死区电压,也称阈值电压或开启电压,记作UT,二极管导通时的正向电压称为二极管导通电压或管压降,记作UD。方向特性:二极管反向电流一般很小,小功率硅管为几mA,锗管为几十mA。反向击穿特性:反向电压增高到一定数值U(BR)时,二极管反向电流急剧增大,这种现象称为反向击穿。五、二极管的工作点和理想特性六、稳压二极管稳压二极管是应用在反向击穿区的特殊硅二极管。稳压二极管的符号、伏安特性和典型应用电路。 七、
7、发光二极管和光电二极管发光二极管工作在正向偏置状态。光电二极管又称光敏二极管,它工作在反向偏置状态。作业:1.3.1 1.3.4 1.3.5 1.4.1 1.4.2第 三 讲教学章节:第一章 电路和电路元件 1.5 双极性晶体管教学要求:1、了解双极性晶体管的结构;2、熟练掌握三极管的三种工作状态及相应PN结的偏置状况;3、熟悉晶体管的输入输出特性曲线及分区情况;4、掌握晶体管简化小信号模型。5、了解绝缘栅场效应管的结构和特性曲线。教学重点:三极管的三种工作状态及相应PN结的偏置状况,晶体管的输入输出特性曲线及分区情况,晶体管简化小信号模型。教学难点:晶体管的输入输出特性曲线及分区情况;晶体管
8、简化小信号模型。教学方法与手段:启发式讲授,多媒体,板书。教学内容与进程:一、引入:基本结构和电流放大作用1、晶体管结构2、三极管分类按结构分为NPN和PNP管,按用途分为放大管、开关管和功率管,按管芯材料分为硅管、锗管和化合物管3、三极管用于放大的条件三极管用于放大的条件是:发射结正向偏置,集电结反向偏置。NPN管:UCUBUE;PNP管:UCUBUE。 电流放大作用:小的基极电流变化量大的集电极电流变化量,具有电流放大作用,电流控制作用电流控制型器件。4、三极管内部载流子运动规律以NPN管为例,给三极管加上合适的偏置电压。 (1)发射区向基区注入电子,形成发射极电流。 (2)电子在基区扩散
9、与复合,形成基极电流。 (3)集电区收集电子形成集电极电流。iEiBiC,二、晶体三极管的特性曲线和主要参数1、共发射极输入和输出特性曲线 输入特性曲线分:死区、非线性区、线性区。常用UCE1V的一条曲线来代表所有输入特性曲线。通常输出特性曲线分为3个区域:饱和区发射结、集电结均正向偏置;IC受UCE显著控制的区域,UCE的数值较小,一般UCEUGS(th)(开启电压)时形成导电沟道(反型层)。(2)UGS对漏极电流ID的控制作用(UDS恒定)(3)漏源电压UDS对漏极ID电流的控制作用(UGS恒定,且大于UT)二、特性曲线和主要参数1、特性曲线 耗尽型NMOS管的特性曲线 NMOS管 PMO
10、S管 增强型MOS管的转移特性输出特性分为3个区:可变电阻区、恒流区和截止区。输出特性:转移特性:2、主要参数三、简化的小信号模型栅源电阻很大,栅极电流 栅源电压控制漏极电流电压控制电流源模型 四、第一章部分习题讲解作业:第一章习题复习第 五 讲教学章节:第二章 电路分析基础 2.1 基尔霍夫定律教学要求:1、熟练掌握基尔霍夫定律;2、掌握支路电流法及其使用条件。 教学重点:基尔霍夫定律、支路电流法。教学难点:根据实际电路如何灵活应用上述定理。教学方法与手段:启发式讲授,讨论发言,多媒体,板书。教学内容与进程:一、引入:基尔霍夫定律有关的电路名词:支路、节点、回路、网孔。1、基尔霍夫电流定律(
11、KCL)任一时刻,流入一个节点的电流之和等于从该节点流出的电流之和。对节点a应用KCL可写i1+i3+i4=i2+i5或i1-i2+i3+i4-i5=0写成一般形式即 i=0 KCL的推广 i1+i2+i3=02、基尔霍夫电压定律(KVL)任何时刻,在任一闭合回路上的所有支路电压的代数和恒等于零。写成表示式为u=0 。对图示电路,有即写成一般形式 二、支路电流法利用支路电流法解题的步骤:(1)任意标定各支路电流的参考方向和网孔绕行方向。(2)用基尔霍夫电流定律列出节点电流方程。有n个节点,就可以列出n-1个独立电流方程。(3)用基尔霍夫电压定律列出L=b-(n-1)个网孔方程。说明:L指的是网
12、孔数,b指是支路数,n指的是节点数。(4)代入已知数据求解方程组,确定各支路电流及方向。对于节点A有:I1+I2=I电路中共有二个网孔,分别对左、右两个网孔列电压方程:I1R1-I2R2+E2-E1=0IR+I2R2-E2=0I1=10AI2=-5AI=5A特例:某一支路电流已知,可以少列一个电流方程作业:2.1.1 2.1.2 2.1.6 第 六 讲教学章节:第二章 电路分析基础 2.2叠加定理及等效电源定理教学要求:1、熟练使用叠加定理求解问题。2、熟练掌握电路的戴维南等效和诺顿等效,运用戴维南和诺顿定理进行计算; 教学重点:叠加定理应用;电路的戴维南等效和诺顿等效, 教学难点:叠加定理应
13、用,利用戴维南和诺顿定理对电路进行相关分析、计算; 教学方法与手段:启发式讲授,比较,多媒体,板书。教学内容与进程:一、引入:等效电源定理1、叠加定理叠加原理:在线性电路中,由多个独立源共同作用产生的响应(支路电压或电流)等于各独立源单独作用时所产生的响应分量代数和。 = + 注意事项: 叠加原理只适用于线性电路。 线性电路的电流或电压均可用叠加原理计算,但功率一般不用叠加原理计算。(3)不作用电源的处理 电压源不作用,即 uS = 0,相当于短路线; 电流源不作用,即 is=0,相当于断路。例:用叠加原理计算例图所示电路中的电流 i,并计算 4电阻上消耗的功率。=+2、戴维南定理何一个有源二
14、端网络,只要其中的元件都是线性的,都可以用一个电压源与电阻相串联的模型来替代。电压源的电压等于有源二端网络的开路电压uOC,电阻等于该网络中所有电压源短路、电流源开路时的等效电阻R0,R0称为等效内阻。 把需要计算电流的支路单独划出,电路的其余部分成为一个有源二端网络。将有源二端网络变换为等效电压源模型,使复杂电路变换为单回路电路戴维宁电路。求等效电压源模型的电压S等于有源二端网络的开路电压;求等效电压源模型的内阻0等于相应的无源二端网络的等效电阻;由戴维宁电路算出所求支路的电流用全电路欧姆定律计算。适用范围: 只需要计算电路中某一指定支路的电流、电压。例:试用戴维宁定理重解解:a将原电路用戴
15、维宁等效电路代替, b求电压源模型的理想电压源电压S,故 S=0=I1R2I2R4=(0.15100.140)V=2.5Vc求电压源模型的内阻R0,d由戴维宁等效电路求出通过BD支路的电流 3、诺顿定理任何一个有源线性单口网络都可以用一个电流源和电阻的并联来等效代替。等效电流源的电流等于有源二端网络的短路电流ISC,等效电阻等于有源二端网络中除去所有电源(电压源短路,电流源开路)后所得到的无源单口网络的等效电阻RO。 例作业:2.2.1 2.2.2 2.2.4 2.2.5 第 七 讲教学章节:第二章 电路分析基础 2.3.12.3.2 正弦量的三要素;正弦量的向量表示方法 教学要求:1.理解正
16、弦交流电的三要素以及相位差和有效值的概念。2理解正弦交流电的各种表示方法及互相间的关系,掌握正弦交流电的相量表示法教学重点:正弦交流电的相量表示法教学难点:正弦交流电的相量表示法。教学方法与手段:启发式讲授,讨论,多媒体,板书。教学内容与进程:一、正弦量的三要素正弦交流电随时间按正弦规律周期性变化的电压(u)和电流(i)1最大值幅值。2T2角频率单位时间内正弦函数辐角的增长值(rad/s)。=2/T(t+i)正弦量随时间变化的进程3初相位计时开始时刻正弦量的相位角(rad或)。例: 某正弦电压的最大值Um =310V,初相角u =30;某正弦电流的最大值Im= 14.1A,初相角i =60。它
17、们的频率均为50HZ。试分别写出电压和电流的瞬时值表达式。并画出它们的波形。解:电压的瞬时值表达式为u = Um sin (t+u ) =310 sin (2f t+u )V =310 sin (314 t+30)V电流的瞬时值表达式为 i = Im sin (t+i )=14.1 sin (314t60)A 4、相位差两个同频率正弦量的初相角之差。= (t+u)(t+i)= ui=30(60)=90二、正弦量的相量表示法1. 复数及其运算2. 相量与正弦量的关系相量与正弦量之间存在着一一对应的关系。 例如其中称为相量。3. 相量的运算同频率正弦量的加、减、乘、除运算可转换为相应的相量运算。作
18、业:2.3.2 2.3.3第 八 讲教学章节:第二章 电路分析基础 2.3.32.3.6 正弦交流电路 教学要求:1、熟练掌握电阻、电感、电容元件上电压与电流关系的向量形式;2、掌握简单正弦交流电路的计算;3、掌握交流电路的有功功率、无功功率和视在功率;4、掌握RLC电路中的串并联谐振特点。教学重点:电阻、电感、电容元件上电压与电流关系的向量形式,简单正弦交流电路的计算。教学难点:简单正弦交流电路的计算。教学方法与手段:启发式讲授,讨论,多媒体,板书。教学内容与进程:一、引入:电阻、电感、电容元件上电压与电流关系的向量形式1、电阻元件 则 式中UR=RIR,u=i。电阻元件上电压与电流的相量关
展开阅读全文