《自动控制原理》黄坚课后习题答案.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《《自动控制原理》黄坚课后习题答案.docx》由用户(最好的沉淀)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制原理 自动控制 原理 课后 习题 答案
- 资源描述:
-
1、2-1 试建立图所示电路的动态微分方程ui1R1 R-i2i+u-Ci2ou1L+CRuiR1i1uiio-(a) 解:i =i-i22-u =u -u121iouu -uui =R1= Rioi=Ro1112i =C1=Cdud(u -u )iou -uu-Rio = RoCd(u -u )dito2(b) 解:dtdt12(u -u )i=i +ii=Ri1121duduudui = Roi =C dt 1R (u -u2io)=Ru -CR1 01R2( dt i- dt o )212L duCR Rduo+Ru +Ru =CRR dui+R uu -u =Rdt o12 dt1 o2
2、01 2 dt2 i1o2u -uuduui - uo - L duo = uo+C duo+ CLd2uo Ri1 = Ro +Cdt 1RRR R dtR111 22dtRdt22L12 duoui = CLd2uo+(C+ L )duo +( 1 + 1 )u u =u +R dtRRdt2R RdtRRo1o2121 2122-2 求下列函数的拉氏变换。(1) f(t)=sin4t+cos4t解:Lsint=Lcost= s2+s22+s2Lsin4t+cos4t=4+s= s+4 s2+16s2+16 s2+16(2) f(t)=t3+e4t解:Lt3+e4t=3!+1 = 6s+2
3、4+s4s4(3) f(t)=tneat解:Ltneat=s-4n!s4(s+4)(4) f(t)=(t-1)2e2t(s-a)n+12(s-2)解:L(t-1)2e2t=e-(s-2)3s+12-3 求下列函数的拉氏反变换。(1) F(s)=AA=1 +2 (s+2)(s+3)s+2s+3解:A =(s+2)s+11(s+2)(s+3) s=-2=-1A =(s+3)s+1=22F(s)= 2(s+2)(s+3) s=-3-1f(t)=2e-3t-e-2ts+3ss+2AAA(2) F(s)=(s+1)2(s+2)=(s+11)2+ s+12 + s+23解:A =(s+1)2s=-11(s
4、+1)2(s+2) s=-1A = d s =22 dss+2s=-1A =(s+2)s=-23(s+1)2(s+2) s=-2f(t)=-2e-2t-te-t+2e-t(4) F(s)=s+2 s(s+1)2(s+3)2s2-5s+1 A s+AA AAAA12 +34 (3) F(s)= s(s2+1) = s1 +1 2 + s32解:=(s+1)2 + s+1s + s+3-121-3解: F(s)(s2+1)s=+j =A s+AA = 2A = 3A4=12A = 42s2-5s+11=A s+A2 s=+j1(s+32)2d s(s+3)ss=j12 s=jA =ds-2-5j+
5、1=jA +A-5j-1=-A +jA2s=-1j1212= s(s+3)-(s+2)(2s+3)= -3123A =1A =-5A =F(s)s s=0 =1s(s+3)2s=-14+1-5 f(t)= -t e-t-3 e-t+ 2+ 1 e-3tF(s)= s +ss2+1s2+1f(t)=1+cost-5sint24312(2-4) 求解下列微分方程。+5+6y(t)=6(1) d2y(t)dy(t)y(0)=y(0)=2dt2dt6解:s2Y(s)-sy(0)-y(0)+5sY(s)-5y(0)+6Y(s)= sY(s)=1 +6+2s2+12sAs(s2+5s+6)sA s+22
6、+A s+33A =1A =5A =-4123y(t)=1+5e-2t-4e-3t2-5试画题图所示电路的动态结构图,并求传递函数。i+1iu-2R1i Rur2(1) c解:+U (s)r_I (s)Cs 1+1+I(s)R2U (s)ccU (s)RI (s)-c1 2( 1 +sC)RU (s)R2R +R R sCUr(s)=11=R +R2 +R1 R2 sCc1+(R +sC)R121 2(2) ur-12解:U (s)r_1I(s)I (s) 1 U (s) cU (s) L1I (s)2U (s)1-R-CsL1Ls1Rc2U (s) L1I (s)1213Ru1L+c1 CR
7、u2-L =-R /Ls L =-/LCs2 L =-1/sCRL L =R /LCR s2122311 321P =R /LCR s2=1U (s)R1211U r(s)= R CLs2+(R R2C+L)s+R +Rc11 2122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求 G(s)。 (t)c(t)K0T解: (t)c(t)Kt0Ttc(t)=Kt- K(t-T) C(s)=K (1-e-T)S C(s)=G(s)TTTs22-9 若系统在单位阶跃输入作用时,已知初始s条件为零的条件下系统的输出响应,求系统的r(t)=I(t) c(t)=1-e-2t+e-t传递函数和
8、脉冲响应。R(s)= 1解: C(s)=111(s2+4s+2)-+=ss+2 s+1s(s+1)(s+2)(s2+4s+2)C(s)=(s+1)(s+2)G(s)=C(s)/R(s)=(s2+4s+2)(s+1)(s+2)c(t)= (t)+2e-2t-e-tR(s)-G (s)X (s)G663C(s)-GGGG1 X (s)2-3 X (s)41X (s)23C(s)G (s)-G (s)C(s)G (s)G5785-G7G2-10 已知系统的拉氏变换式,试画出系统的动态结构图并求传递函数。解 : X (s)=R(s)G (s)-G (s)G (s)-G (s)C(s)11178=R(s
9、)-C(s)G (s)-G (s)G (s)781X (s)=G (s)X (s)-G (s)X (s)22163X (s)=G (s)X (s)-C(s)G (s)C(s)=G (s)X (s)3325438R(s)G GG G 1+G3 G4 GC(s)-1 2-3 2 6G5C(s)G G G GG -GR(s) =1+G G G +G G1G2+G3 G4G G (G -G )782-11 求系统的传递函数3 2 63 4 51 2 3 478解: L =-G H =1+G H +G G H12 12 11 2 2(a)R(s)G (s)3_G (s)+G (s)C(s)1_2H (s
10、)1H (s)L =-G G H2P =G G =11 2 211 21P nC(s)P =G G =123 22G G +G GR(s) = k=1 kk=1+G2H1+G2G3H2 121 2 2(b)R(s)G (s)3C(s)解 : L =-G G H L =-G G H P =G G =1_ G (s)+G (s)11 221 411 2112 =1+G G H+G G H P =G G =1+G G HG (s)+1 41 223 221 44C(s) G G +G G +G G G G HH(s)R(s) =1 12+G 2G 3H+G1G2 H3 41 21 4R(s)C(s)
11、_G1G2G+3+H1R(s)_GG C(s)12G3H+1+H1(c)C(s)G G (1 G H )R(s) = 1+G 1G 2+G H 3G1 H1 21 13 1R(s)GC(s)1+_G2H(d)P =G =1解: L =-G H11112C(s)P =G =1222(e)R(s)=(G +G )11+G H122R(s)GC(s)-1+G2_G3G解: L =-G GL =G GL =-G G11 321 432 3L =G G P =G =1 P =G =142 4111222C(s)(G +G )R(s) =1+G G +G G1 G2G -G G41 32 31 42 4(
12、f)解: L =-G GL =G P =G =1-GR(s)C(s)_LLG11 G22+11 2221 G1 (1 12 =1+G G -GC(s) =1 G )21 22R(s) 1+G G G1 222-12 (a)H (s)D(s)1R(s)_G (s)1+G (s) C(s)+2LLH (s)122H (s)3L =G HL =-G G H P =G G =112 221 2 311 211C(s) =G2G R(s) 1-G H +G G H2 21 2 3P =G =1 P =-G G H =112121 2 12C(s) =G (1-G H )21 1D(s) 1-G H +G
13、 G H2 21 2 3解 : L =-G GL =-G G H P =G G =111 221 211 21R(s)_ G1GC(s)2H(b)C(s)G GR(s)= 1+G G1 H2+G GP =G G1 21 2 =11n 21P =1 =1+G G H221 2=n 21 2C(s) 1+G G +G G H D(s) 1+G G +G G H1 21 2=1 C(s)解 : L =-G L =-G G GP =G G =11221 2 312 312-13 (a)P =G G G G G +G G G=2 31 2 3 R(s)E(s)_G+1_GGC(s)L23L1221 2
14、32R(s)1+G +G G GP =-G G =1P =1 =12+G 1 2 312 31222C(s)-G G +1+G R(s) = 1+G2 +3G G G221 2 3解 : L =-G G L =-G G GP =G G =113 422 3 5 G 1G G1 +5G G1E(s) 1GR(s)-G2-G+GC(s)35G4(b)P =G G G2 =1 C(s)=1 2 51 52 3 52R(s) 1+G G G +G GP =G G =1P =12 =3 1+5 G G3 411 51223 4E(s) G G +(1+G G )= 1 51 5 R(s) 1+G G G
15、 +G G2 3 53 42-14G (s)解 : P =G G =1 P =G G =1411 3122 32R(s) E(s)G (s)G (s) + C(s)P =G G =1 P =G G =1-1+331 4342 44G (s)X(s)L =-G GL =-G GC(s) (G +G )(G +G )=1234 2D(s)11 3 22 3 R(s)1+G (G +G )E(s)= 1X(s) =G (s)C(s)=1312R(s) 1+G (G +G )E(s)2D(s)312R (s)1+-GGGC (s)1123H2H1R (s)+2-GGGC (s)24562-15解 :
展开阅读全文