书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型《自动控制原理》黄坚课后习题答案.docx

  • 上传人(卖家):最好的沉淀
  • 文档编号:5716987
  • 上传时间:2023-05-05
  • 格式:DOCX
  • 页数:18
  • 大小:462.47KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《《自动控制原理》黄坚课后习题答案.docx》由用户(最好的沉淀)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    自动控制原理 自动控制 原理 课后 习题 答案
    资源描述:

    1、2-1 试建立图所示电路的动态微分方程ui1R1 R-i2i+u-Ci2ou1L+CRuiR1i1uiio-(a) 解:i =i-i22-u =u -u121iouu -uui =R1= Rioi=Ro1112i =C1=Cdud(u -u )iou -uu-Rio = RoCd(u -u )dito2(b) 解:dtdt12(u -u )i=i +ii=Ri1121duduudui = Roi =C dt 1R (u -u2io)=Ru -CR1 01R2( dt i- dt o )212L duCR Rduo+Ru +Ru =CRR dui+R uu -u =Rdt o12 dt1 o2

    2、01 2 dt2 i1o2u -uuduui - uo - L duo = uo+C duo+ CLd2uo Ri1 = Ro +Cdt 1RRR R dtR111 22dtRdt22L12 duoui = CLd2uo+(C+ L )duo +( 1 + 1 )u u =u +R dtRRdt2R RdtRRo1o2121 2122-2 求下列函数的拉氏变换。(1) f(t)=sin4t+cos4t解:Lsint=Lcost= s2+s22+s2Lsin4t+cos4t=4+s= s+4 s2+16s2+16 s2+16(2) f(t)=t3+e4t解:Lt3+e4t=3!+1 = 6s+2

    3、4+s4s4(3) f(t)=tneat解:Ltneat=s-4n!s4(s+4)(4) f(t)=(t-1)2e2t(s-a)n+12(s-2)解:L(t-1)2e2t=e-(s-2)3s+12-3 求下列函数的拉氏反变换。(1) F(s)=AA=1 +2 (s+2)(s+3)s+2s+3解:A =(s+2)s+11(s+2)(s+3) s=-2=-1A =(s+3)s+1=22F(s)= 2(s+2)(s+3) s=-3-1f(t)=2e-3t-e-2ts+3ss+2AAA(2) F(s)=(s+1)2(s+2)=(s+11)2+ s+12 + s+23解:A =(s+1)2s=-11(s

    4、+1)2(s+2) s=-1A = d s =22 dss+2s=-1A =(s+2)s=-23(s+1)2(s+2) s=-2f(t)=-2e-2t-te-t+2e-t(4) F(s)=s+2 s(s+1)2(s+3)2s2-5s+1 A s+AA AAAA12 +34 (3) F(s)= s(s2+1) = s1 +1 2 + s32解:=(s+1)2 + s+1s + s+3-121-3解: F(s)(s2+1)s=+j =A s+AA = 2A = 3A4=12A = 42s2-5s+11=A s+A2 s=+j1(s+32)2d s(s+3)ss=j12 s=jA =ds-2-5j+

    5、1=jA +A-5j-1=-A +jA2s=-1j1212= s(s+3)-(s+2)(2s+3)= -3123A =1A =-5A =F(s)s s=0 =1s(s+3)2s=-14+1-5 f(t)= -t e-t-3 e-t+ 2+ 1 e-3tF(s)= s +ss2+1s2+1f(t)=1+cost-5sint24312(2-4) 求解下列微分方程。+5+6y(t)=6(1) d2y(t)dy(t)y(0)=y(0)=2dt2dt6解:s2Y(s)-sy(0)-y(0)+5sY(s)-5y(0)+6Y(s)= sY(s)=1 +6+2s2+12sAs(s2+5s+6)sA s+22

    6、+A s+33A =1A =5A =-4123y(t)=1+5e-2t-4e-3t2-5试画题图所示电路的动态结构图,并求传递函数。i+1iu-2R1i Rur2(1) c解:+U (s)r_I (s)Cs 1+1+I(s)R2U (s)ccU (s)RI (s)-c1 2( 1 +sC)RU (s)R2R +R R sCUr(s)=11=R +R2 +R1 R2 sCc1+(R +sC)R121 2(2) ur-12解:U (s)r_1I(s)I (s) 1 U (s) cU (s) L1I (s)2U (s)1-R-CsL1Ls1Rc2U (s) L1I (s)1213Ru1L+c1 CR

    7、u2-L =-R /Ls L =-/LCs2 L =-1/sCRL L =R /LCR s2122311 321P =R /LCR s2=1U (s)R1211U r(s)= R CLs2+(R R2C+L)s+R +Rc11 2122-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求 G(s)。 (t)c(t)K0T解: (t)c(t)Kt0Ttc(t)=Kt- K(t-T) C(s)=K (1-e-T)S C(s)=G(s)TTTs22-9 若系统在单位阶跃输入作用时,已知初始s条件为零的条件下系统的输出响应,求系统的r(t)=I(t) c(t)=1-e-2t+e-t传递函数和

    8、脉冲响应。R(s)= 1解: C(s)=111(s2+4s+2)-+=ss+2 s+1s(s+1)(s+2)(s2+4s+2)C(s)=(s+1)(s+2)G(s)=C(s)/R(s)=(s2+4s+2)(s+1)(s+2)c(t)= (t)+2e-2t-e-tR(s)-G (s)X (s)G663C(s)-GGGG1 X (s)2-3 X (s)41X (s)23C(s)G (s)-G (s)C(s)G (s)G5785-G7G2-10 已知系统的拉氏变换式,试画出系统的动态结构图并求传递函数。解 : X (s)=R(s)G (s)-G (s)G (s)-G (s)C(s)11178=R(s

    9、)-C(s)G (s)-G (s)G (s)781X (s)=G (s)X (s)-G (s)X (s)22163X (s)=G (s)X (s)-C(s)G (s)C(s)=G (s)X (s)3325438R(s)G GG G 1+G3 G4 GC(s)-1 2-3 2 6G5C(s)G G G GG -GR(s) =1+G G G +G G1G2+G3 G4G G (G -G )782-11 求系统的传递函数3 2 63 4 51 2 3 478解: L =-G H =1+G H +G G H12 12 11 2 2(a)R(s)G (s)3_G (s)+G (s)C(s)1_2H (s

    10、)1H (s)L =-G G H2P =G G =11 2 211 21P nC(s)P =G G =123 22G G +G GR(s) = k=1 kk=1+G2H1+G2G3H2 121 2 2(b)R(s)G (s)3C(s)解 : L =-G G H L =-G G H P =G G =1_ G (s)+G (s)11 221 411 2112 =1+G G H+G G H P =G G =1+G G HG (s)+1 41 223 221 44C(s) G G +G G +G G G G HH(s)R(s) =1 12+G 2G 3H+G1G2 H3 41 21 4R(s)C(s)

    11、_G1G2G+3+H1R(s)_GG C(s)12G3H+1+H1(c)C(s)G G (1 G H )R(s) = 1+G 1G 2+G H 3G1 H1 21 13 1R(s)GC(s)1+_G2H(d)P =G =1解: L =-G H11112C(s)P =G =1222(e)R(s)=(G +G )11+G H122R(s)GC(s)-1+G2_G3G解: L =-G GL =G GL =-G G11 321 432 3L =G G P =G =1 P =G =142 4111222C(s)(G +G )R(s) =1+G G +G G1 G2G -G G41 32 31 42 4(

    12、f)解: L =-G GL =G P =G =1-GR(s)C(s)_LLG11 G22+11 2221 G1 (1 12 =1+G G -GC(s) =1 G )21 22R(s) 1+G G G1 222-12 (a)H (s)D(s)1R(s)_G (s)1+G (s) C(s)+2LLH (s)122H (s)3L =G HL =-G G H P =G G =112 221 2 311 211C(s) =G2G R(s) 1-G H +G G H2 21 2 3P =G =1 P =-G G H =112121 2 12C(s) =G (1-G H )21 1D(s) 1-G H +G

    13、 G H2 21 2 3解 : L =-G GL =-G G H P =G G =111 221 211 21R(s)_ G1GC(s)2H(b)C(s)G GR(s)= 1+G G1 H2+G GP =G G1 21 2 =11n 21P =1 =1+G G H221 2=n 21 2C(s) 1+G G +G G H D(s) 1+G G +G G H1 21 2=1 C(s)解 : L =-G L =-G G GP =G G =11221 2 312 312-13 (a)P =G G G G G +G G G=2 31 2 3 R(s)E(s)_G+1_GGC(s)L23L1221 2

    14、32R(s)1+G +G G GP =-G G =1P =1 =12+G 1 2 312 31222C(s)-G G +1+G R(s) = 1+G2 +3G G G221 2 3解 : L =-G G L =-G G GP =G G =113 422 3 5 G 1G G1 +5G G1E(s) 1GR(s)-G2-G+GC(s)35G4(b)P =G G G2 =1 C(s)=1 2 51 52 3 52R(s) 1+G G G +G GP =G G =1P =12 =3 1+5 G G3 411 51223 4E(s) G G +(1+G G )= 1 51 5 R(s) 1+G G G

    15、 +G G2 3 53 42-14G (s)解 : P =G G =1 P =G G =1411 3122 32R(s) E(s)G (s)G (s) + C(s)P =G G =1 P =G G =1-1+331 4342 44G (s)X(s)L =-G GL =-G GC(s) (G +G )(G +G )=1234 2D(s)11 3 22 3 R(s)1+G (G +G )E(s)= 1X(s) =G (s)C(s)=1312R(s) 1+G (G +G )E(s)2D(s)312R (s)1+-GGGC (s)1123H2H1R (s)+2-GGGC (s)24562-15解 :

    16、L =G GL =-G G G H HL =-G11 221 4 5 1 234 =1-G G +G G G H H +G-G G G1 21 4 35 1 241 2 4P =G G G =1+G11 2 314C (s)G G G (1+G )1R1(s) =1+G +G G G2 H3 H -G4 G -G G G141 4 5 1 21 21 2 4C (s)G G G (1-G G )C (s)-G G G G G H1R2(s) =1+G +G G4 G5 H6 H -G1 G2-G G GR (s) =1+G +G G G1 H23H 4-G5 G1-G G G241 4 5 1

    17、 21 21 2 4241 4 5 1 21 21 2 4C (s)G G G G HR2(s) =1+G +G G1G4H5H6 -G2 G -G G G141 4 5 1 21 21 2 43-1 设温度计需要在一分钟内指示出响应值的 98%,并且假设温度计为一阶系统,求时间常数 T。如果将温度计放在澡盆内,澡盆的温度以 10oC/min 的速度线性变化,解: c(t)=c( )98%t=4T=1 minT=0.25r(t)=10t c(t)=10(t-T+e-t/T) =10(T- e-t/T)e(t)=r(t)-c(t)e=lime(t)=10T=2.5ss tR1u Rr0-+C+u

    18、c3-2 电路如图,设系统初始状态为零。C=2.5 FR =20 kR =200 k01(1)求系统R的/R单位阶跃响应,及 uc(t1)=8 时的 t1 值解: G(s)=R C1 s+01 =KT=R C=0.5K=R /R =10Ts + 11101- t-2t8=10(1 e-2tu (t)=K(1 e T)=10(1 e)c0.8=1 e-2te-2t=0.2t=0.8(2) 求系统的单位脉冲响应,单位斜坡响应,及单位抛物响应在 t1 时刻的值T解:t =0.8R(s)=1g(t)=1K e-t/T=4s2R(s)= 1u (t)=K(t-T+Te-t/T)=4cR(s)= 1U (

    19、s)=K1 =K(1 - T + T2 - T2)s3cTs + 1 s3s3s2ss+1/Tu (t)=10( 1 t2-0.5t+0.25-0.25e-2t)=1.2c2G(s)=43-3 已知单位负反馈系统的开环传递函数,求系统s(s+5)解: C(s)=4R(s)= 1C(s)=4= 1 + 1/3 - 4/3 R(s)s2+5s+4ss(s+1)(s+4)ss+4s+1c(t)=1+ 1 e-4t- 4 e-t33G(s)=13-4 已知单位负反馈系统的开环传递函数,求系统的上升时间 t 、峰值时间 t 、超调量% 和调整时间 t 。s(s+1)解C(s)12 =1 =1d = n

    20、1- 2 =0.866: R(s)= s2+s+1n 2 = 1nn1- 2 =0.5 =tg-1 =60ot = - = 3.14-3.14/3=2.42t = = 3.14 =3.63r d0.866p d0.866o %=e- 1- 2100% =16%t =3 =6 t =4 =8e-1.8s ns n3-6 已知系统的单位阶跃响应: c(t)=1+0.2e-60t-1.2e-10t(1) 求系统的闭环传递函数。(2) 求系统的阻尼比和无阻尼振荡频率。解: C(s)=+-=10.21.2600ss+60 s+10 s(s+60)(s+10)R(s)= 1C(s)=600 2n=70 =

    21、24.5nsR(s) s2+70s+600 2 =600n3-7设二阶系统的单位阶跃响应曲线如图,系统的为单位反 =1.43c(t)1.3100.1t解:t = =0.1 / 1- 2 =ln3.3 =1.19 n 1- 2 = 3.14 =31.4pn 1- 20.1- 1- =0.3( )2/1- 2 =1.42 =33.4e2 1- =3.39.86 2=1.42-1.42 2n 21115.6ne 2 =0.35G(s)=s(s+2n) = s(s+22.7)3-11已知闭环系统的特征方程式,试用劳斯判据判断系统的稳定性。解:(1) s3+20s2+9s+100=0劳斯表如下:s319

    22、s220100s14s0 100(3) s4+8s3+18s2+16s+5=0劳斯表如下:s41185s3816s2165s121616系统稳定。G(s)=s05系统稳定。K(0.5s+1)3-12 已知单位负反馈系统的s开(s环+1传)(0递.5函s2+s+1)=b解: s4+3s3+4s2+2s+Ks+2K=0s4142Ks332+Ks2 b2K31s1 b4110-2K313=bK2+10K-204110-K(K-1.7)(K+11.7)0 K0s1b31s010311+10 0R(s)- s+1ss(s+1)10C(s)3-14 已知系统结构如图,试确定系解: G(s)= 10( s+

    23、1) (s)=10( s+1)s2(s+1)s3110s3 +s2+10 s+10110 -10s2110b =031s1b31s010 1r(t)=I(t)+2t+t23-16 已知单位反馈系统的开环传递函数,R(s)=122+ss2s3pK =20R1e=0 = (1) G(s)=20=0ss1 1+K21解:(0.1s+1)(0.2s+)K =0e=ss2K =0ae =sse=ss3K =e=0(2) G(s)=200=10=1pss122 s(s+2)(s+10)s(0.5s+1)(0.1s+1)K =10ess2= K =10K =0ae =sse=ss3(3) G(s)=10(2

    24、s+1)=(2s+1)K =pe=0ss1s2(s2+4s+10)s2(0.1s2+0.4s+1) =2K =e=0ss2K =1ae =2sse=2ss33-17 已知系统结构如图。(1) 单位阶跃输入:R(s) - K C(s) s21%=20%ts=1.8(5%) 确定K1和值。s1(s)=KK2n=Ke- 1- 2=0.2s +Ks解: G(s)=121s2+K s+K11 2 =K1t = =1.8 =0.45 =3n3=3.7K =1s n =0.24n 1.8*0.452=13.71n(2) 求系统的稳态误差: r(t)=I(t), t ,1 t221K =K1R(s)= spe

    25、=0ss11s2解: G(s)=s2+Ks =s(1 s+1)=1R(s)= 1K =Ke= =0.24ss2s31K1R(s)= 1K =0ea=ss3R(s)-s(s+2) sKC(s)3-18 已知系统结构如图。为使=0.7 时,单位斜坡输入的稳态误差 ess=0.25 确定 KK解: G(s)=K=K2+K (s)=和值 。s2+2s+K ss(1s+1)s2+(2+K )s+K2+K2 =2+K =2*0.7 Ke = 2+K =0.25K =31.6nssKK 2 =Kn = 0.25K-2 =0.1863-19 系统结构如图。D (s)1D (s)2r(t)=d (t)=d (t

    26、)=I(t)R(s)E(s) G(s)+ F(s) +C(s)12-(1) 求r(t)作下的稳态误差1解: e=lim ss=1ssrs01+G(s)F(s) 1+G(0)F(0)(2) 求d (t)和d (t)同时作用下的稳态误差1-2G (s)H(s)Ed(s)= 1+G (s2)G (s)H(s)D(s)1e= lim s 2-F(s)+-1 1 = -1+F(s)ssds01+G(s)F(s)1+G(s)F(s) s1+G(0)F(0)(3) 求d (t)作用下的稳态误差1KF(s)= 1G(s)=Kp + sJs- 1)e= lim s-F(s)1 = lim sJs1 =0 ssd

    27、s0 1+G(s)F(s) ss0 1+(K +pK 1 ss Js4-1已知系统的零、极点分布如图,大致绘制出系统的根轨迹。解: (1)j0 (3)j(4)j60009000 (2)j0 600(5)j6000 (6)j0 (7)1350j4500 (8)1080j36004-2已知开环传递函数,试用解析法绘制出系统的根轨G(s)=K (s+1)rK解: (s)= s+1+r KrK =0s=-1s=-1-Kj-3+j20+j1-2 -10 rs=-2+j0K =r s=-rs=0+j1 s=-3+j2jp3p2pzz01 214-3 已知系统的开环传递函数, 试绘制出根轨迹图。解:K (s

    28、+1.5)(s+5.5)(1) G(s)=rs(s+1)(s+5)1)开环零、极点p =0p =-1 p =-54)分离点和会合点A(s)B(s)=A(s)B(s)123z =-1.5z =-5.5212)实轴上根轨迹段p pz pz -A(s)=s3+6s2+5s B(s)=s2+7s+8.25 A(s)=3s2+12s+512132B(s)=2s+73) 根轨迹的渐近线n-m= 1 = +180os =-0.63 s =-2.5s1=-3.6s2=-7.2834jp3-1.75pp21z10K (s+1.5) (2) G(s)= s(sr+1)(s+4)1) 开环零、极点p =0p =-1

    29、p =-41z =2 -1.5312) 实轴上根轨迹段p pp z12313) 根轨迹的渐近线n-m= 2 = +90o2 =-1-4+1.5 =-1.75(3) G(s)=Ks(s+r1)21)开环零、极点j1p2pp -0.6701 3-1p =0p =-1 p =-14) 分离点和会合点A(s)=s3+5s2+4sB(s)=s+1.5 A(s)=3s2+10s+4B(s)=1s=-0.621232) 实轴上根轨迹段p pp -1233) 根轨迹的渐近线n-m=3 = +60o , +180o3 =-1-1 =-0.674) 根轨迹与虚轴的交点s3+2s2+s+K =05) 分离点和会合点

    30、A(s)=s3+2s2+s B(s)=1 A(s)=3s2+4s+1K =0rK =2=0r1=1B(s)=0s=-0.33r2,3j6.2p4p32ppz -5.67011-6.2K (s+8)(4) G(s)= s(s+3)(sr+7)(s+15)1) 开环零、极点p =0p =-3 p =-7 p =-15 z =-8123412) 实轴上根轨迹段p pp zp -123143) 根轨迹的渐近线n-m=3 = -3-7-15+8 =-5.67o180 = +60 , +3o4) 根轨迹与虚轴的交点s4+25s3+171s2+323s+8K =05) 分离点和会合点A(s)=s4+25s3+171s2+315sA(s)=4s3+75s2+342s+315 B(s)=s+8B(s)=2s+7K =0 r=0K =638 1rr =6.22,3s=-1.4jp21pz0 14-5 已知系统的开环传递函数。(1)试绘制出根轨迹图。(2)增益 Kr 为何值时, 复数特征根的实部为-2。( )=K (s+2)G ss(rs+,1)1解:p =0p =-1 z =-21 p p 2 z -121分离点和会合点s2+4s+2=0 s =-3.41 s =-0.59-4 +(1+K) =012r闭环特征方程式4-2-2(1+Kr)+2K =0rs2+s+K s+2K =0s=-2

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:《自动控制原理》黄坚课后习题答案.docx
    链接地址:https://www.163wenku.com/p-5716987.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库