数字电路7.5.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《数字电路7.5.ppt》由用户(saw518)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数字电路 7.5
- 资源描述:
-
1、1 1 Construct a state/output table State minimization(状态最小化)(状态最小化)State assignment(状态赋值)(状态赋值)Construct a transition/output table Choose a flip-flop type(确定特征方程)(确定特征方程)Construct an excitation table Derive excitation equations Derive output equations Draw a logic diagram逻辑抽象逻辑抽象(由当前状态、未来状由当前状态、未来状态
2、推导激励信号取值态推导激励信号取值)组合逻辑设计组合逻辑设计(当前状态和输入的函数当前状态和输入的函数)The detailed steps of state machine design:2 2 The first method to derive excitation equations is:The second method to derive excitation equations is:(Construct it directly using the transition equations and characteristic equation.)application tab
3、leexcitation tableexcitation equationtransition tableKarnaugh maptransition equationexcitation equationtransition tablecharacteristic equation3 3Example 2 Example 2(P554)(P554)Design a clocked synchronous state machine with two inputs,A and B,and a single output Z that is 1 if:A had the same value a
4、t each of the two previous clock ticks,or B has been 1 since the last time that the first condition was true.Otherwise,the output should be 0.Fig.7-454 4SAB00 01 11 10S*ZMeaningMeaningInitial state INIT0A0A0A1A1A0Got a 0 on A Got a 1 on A A10OK0OK0Got 00 on A OK0A1A10A0A0OK1Got 11 on A OK1OK11OK0OK0
5、BOK1 A1因因B而而OK,A为为1 BOK11A0 BOK0OK1OK1因因B而而OK,A为为0 BOK01A0 BOK0OK1OK11OK0OK0BOK1 A1(1)Construct a state/output table5 5SAB00 01 11 10S*ZMeaningMeaningInitial state INIT0A0A0A1A1A0Got a 0 on A Got a 1 on A A10OK0OK0Got 00 on A OK0A1A10A0A0OK1Got 11 on A OK1OK11OK0OK0BOK1 A1因因B而而OK,A为为1 BOK11A0 BOK0OK
6、1OK1因因B而而OK,A为为0 BOK01A0 BOK0OK1OK11OK0OK0BOK1 A1(1)Construct a state/output table(2)State minimizationOK,A值为值为0OK,A值为值为0OK0OK0OK0OK1 OK,A值为值为1OK1 6 6Initial state INITA0Got a 0 on A Got a 1 on A A1OK,A值为值为0 OK0OK,A值为值为1 OK1SAB00 01 11 10S*Z0A0A0A1A10OK0OK0A1A10A0A0OK1OK11OK0OK0 A11A0OK1OK1OK0 OK15
7、5个状态个状态至少需至少需3 3位状态变量位状态变量 possible state assignmentspossible state assignments000100101110111了解:状态赋值的常用规则了解:状态赋值的常用规则(3)State assignment(2)State minimization(1)Construct a state/output table7 7 practical guidelines for making state assignments:practical guidelines for making state assignments:Choos
8、e an initial coded state into which the machine can easily be forced at reset.Minimize the number of state variables that change on each transition.Maximize the number of state variables that dont change in a group of related states.Exploit symmetries in the problem specification and the correspondi
9、ng symmetries in the state table.Decompose the set of state variables into individual bits or fields.Consider using more than the minimum number of state variables to make a decomposed assignment possible.(P561)了解:状态赋值的常用规则了解:状态赋值的常用规则8 8(4)Construct a transition/output tableINITA0A1OK0OK1SAB00 01 1
10、1 10S*Z0A0A0A1A10OK0OK0A1A10A0A0OK1OK11OK0OK0 A11A0OK1OK1OK0 OK1 000100100100100100100101110101101101101101110110110110110111111111111111111Q1Q2Q3Q1*Q2*Q3*(5)Choose D flip-flop,and construct an excitation tableexcitation tableD1 D2 D39 9INITA0A1OK0OK1SAB00 01 11 10S*Z0A0A0A1A10OK0OK0A1A10A0A0OK1OK11
11、OK0OK0 A11A0OK1OK1OK0 OK1 000100100100100100100101110101101101101101110110110110110111111111111111111Q1Q2Q3Q1*Q2*Q3*D1 D2 D3excitation table(6)Derive excitation equations and output equations5输入输入(A,B,Q1,Q2,Q3)4输出输出(D1,D2,D3,Z)Minimal risk disposition:Minimal risk disposition:unused state initial st
12、ate 000D3=Q2Q3A+Q1AD2=Q1Q3A+Q1Q3A+Q1Q2BD1=Q2Q3+Q1excitation equationsoutput equation:Z=Q1Q2(7)Draw a logic diagram(omitted)(P565 Fig.7-50)1010Example 3 Example 3 1s-counting machine:if the number of 1 on two inputs(X and Y)since reset is a multiple of 4,then the output(Z)is 1,else 0.(7.4.6 P566)(7.4
13、.6 P566)1Got zero 1s S0S0XY 00 01 11 10ZMeaningMeaning SS*S1Got one 1 S1S2Got two 1s S2S10S1S2S3Got three 1s S3S20S2S3S0S3S3S0S1S0011 11Example 4Example 4“Combination lock”state machine:If the sequence of inputs received on X is“01101110”,then unlock(UNLK=1).(7.4.6 P568)(7.4.6 P568)SX0 1S*,UNLK HINK
展开阅读全文