高中数学选修4-5复习课课件(多套整理).pptx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学选修4-5复习课课件(多套整理).pptx》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 选修 复习 课件 整理 下载 _其他_数学_高中
- 资源描述:
-
1、第一课不等式和绝对值不等式【网络体系网络体系】【核心速填核心速填】1.1.不等式的基本性质不等式的基本性质(1)(1)对称性对称性:ab:ab_._.(2)(2)传递性传递性:ab,bc:ab,bc_._.(3)(3)加加(减减):ab):ab_._.(4)(4)乘乘(除除):ab,c0):ab,c0_;ab,cb,c0_._.babcaca+cb+ca+cb+cacbcacbcacbcacb0ab0_,nN_,nN*,且且n n2.2.(6)(6)开方开方:ab0:ab0_,nN_,nN*,且且n2.n2.a an nbbn nna nb2.2.基本不等式基本不等式(1)(1)定理定理1:1
2、:如果如果a,bR,a,bR,那么那么a a2 2+b+b2 2_(当且仅当当且仅当a=ba=b时时,等号成立等号成立).).(2)(2)定理定理2:2:如果如果a,b0,a,b0,那么那么 _(_(当且仅当当且仅当a=ba=b时时,等号成立等号成立).).aba b22ab2ab(3)(3)引理引理:如果如果a,b,cRa,b,cR+,那么那么a a3 3+b+b3 3+c+c3 3_(_(当且当且仅当仅当a=b=ca=b=c时时,等号成立等号成立).).(4)(4)定理定理3:3:如果如果a,b,cRa,b,cR+,那么那么 _(_(当且当且仅当仅当a=b=ca=b=c时时,等号成立等号成
3、立).).(5)(5)推论推论:如果如果a a1 1,a,a2 2a an nRR+,那么那么 _(_(当且仅当当且仅当a a1 1=a=a2 2=a=an n时时,等号成立等号成立).).a b c3 3abc12naaann1 2naaa3abc3abc3.3.绝对值三角不等式绝对值三角不等式(1)|a|(1)|a|的几何意义表示数轴上的点到原点的的几何意义表示数轴上的点到原点的_,_,|a-b|a-b|的几何意义表示数轴上两点间的的几何意义表示数轴上两点间的_._.(2)|a+b|_(a,bR,ab0(2)|a+b|_(a,bR,ab0时等号成立时等号成立).).(3)_|a-b|+|b
4、-c|(a,b,cR,(a-b)(b-c)0(3)_|a-b|+|b-c|(a,b,cR,(a-b)(b-c)0时等号成立时等号成立).).距离距离距离距离|a|+|b|a|+|b|a-c|a-c|(4)|a|-|b|a+b|_(a,bR,(4)|a|-|b|a+b|_(a,bR,左边左边“=”=”成立的条件是成立的条件是ab0,ab0,右边右边“=”=”成立的条件是成立的条件是ab0).ab0).(5)_|a-b|a|+|b|(a,bR,(5)_|a-b|a|+|b|(a,bR,左边左边“=”=”成立的条件是成立的条件是ab0,ab0,右边右边“=”=”成立的条件是成立的条件是ab0).ab
5、0).|a|+|b|a|+|b|a|-|b|a|-|b|【易错警示易错警示】1.1.关注不等式性质的条件关注不等式性质的条件(1)(1)要注意不等式的等价性要注意不等式的等价性.(2)(2)应用不等式时应用不等式时,要注意不等式成立的条件要注意不等式成立的条件.2.2.基本不等式求最值时的关注点基本不等式求最值时的关注点要注意考虑所给式子是否满足要注意考虑所给式子是否满足“一正一正,二定二定,三相等三相等”的要求的要求.3.3.解绝对值不等式的关注点解绝对值不等式的关注点由绝对值不等式转化为不含绝对值不等式时由绝对值不等式转化为不含绝对值不等式时,要注意转要注意转化的等价性化的等价性,特别是平
6、方时特别是平方时,两边应均为非负数两边应均为非负数.类型一类型一不等式的基本性质的应用不等式的基本性质的应用【典例典例1 1】已知已知:ab0,cb0,cb0,cb0,c0,ab0,c(b-a)0,ab0,所以所以 0,0,所以所以 cc.abc b accabab c b aabcccc0.abab,即【方法技巧方法技巧】不等式的基本性质应用的注意点不等式的基本性质应用的注意点(1)(1)注意不等式成立的条件注意不等式成立的条件,若弱化或强化了条件都可若弱化或强化了条件都可能得出错误的结论能得出错误的结论.(2)(2)注意明确各步推理的依据注意明确各步推理的依据,以防出现解题失误以防出现解题
7、失误.【变式训练变式训练】1.1.若若a,ba,b是任意实数是任意实数,且且ab,ab,则则()A.aA.a2 2bb2 2 B.1B.0C.lg(a-b)0D.D.【解析解析】选选D.D.因为因为y=y=是减函数是减函数,所以所以abab abab11()()22x1()2ab11()().222.“x0”2.“x0”是是“x+2”x+2”的的()A.A.充分不必要条件充分不必要条件B.B.必要不充分条件必要不充分条件C.C.充要条件充要条件D.D.既不充分也不必要条件既不充分也不必要条件1x【解析解析】选选C.C.当当x0 x0时时,=2,=2,因为因为x,x,同号同号,所以当所以当x+2
8、x+2时时,则则x0,0,x0,0,所以所以x0.x0.11x2 xxx1x1x1x3.3.已知已知:xy0,mn0:xy0,mn0求证求证:【证明证明】因为因为mn0,mn0,所以所以 0,0,因为因为xy0,xy0,所以所以 0,0,所以所以 xy.nm11nmxynmxy.nm类型二类型二基本不等式的应用基本不等式的应用【典例典例2 2】(1)x,y,zR(1)x,y,zR+,x-2y+3z=0,x-2y+3z=0,求求 的最小值的最小值.(2)(2)若若a,b,cRa,b,cR+,且且a+b+c=1,a+b+c=1,求证求证:2yxz1119.a bb cc a2【解析解析】(1)(1
9、)由由x-2y+3z=0,x-2y+3z=0,得得y=,y=,则则 当且仅当当且仅当x=3zx=3z时时,等号成立等号成立.x 3z2222yx9z6xz6xz 6xz3xz4xz4xz,(2)(2)因为因为a,b,cRa,b,cR+且且a+b+c=1,a+b+c=1,所以所以2=(a+b)+(b+c)+(c+a)2=(a+b)+(b+c)+(c+a)所以所以(a+b)+(b+c)+(c+a)(a+b)+(b+c)+(c+a)所以所以111()a b b c c a331113 a b b c c a39.a b b c c a1119.a b b c c a2【方法技巧方法技巧】利用基本不等
10、式求最值问题的类型利用基本不等式求最值问题的类型(1)(1)和为定值时和为定值时,积有最大值积有最大值.(2)(2)积为定值时积为定值时,和有最小值和有最小值.在具体应用基本不等式解题时在具体应用基本不等式解题时,一定要注意适用的范围一定要注意适用的范围和条件和条件:“:“一正、二定、三相等一正、二定、三相等”.【变式训练变式训练】1.1.已知已知xRxR+,则函数则函数y=xy=x2 2(1-x)(1-x)的的最大值为最大值为_._.【解析解析】y=xy=x2 2(1-x)=xx(1-x)(1-x)=xx(1-x)=xx(2-2x)=xx(2-2x)1231 x x 2 2x184().23
11、2 2727 当且仅当当且仅当x=2-2x,x=2-2x,即即x=x=时取等号时取等号.此时此时,y,ymaxmax=.=.答案答案:234274272.2.求函数求函数y=y=的最小值的最小值.【解析解析】y=y=+2+2tan+2+2tan2 2=3+=3+2tan+2tan2 23+23+2 =3+2=3+2 .当且仅当当且仅当2tan2tan2 2=即即tan=tan=时时,等号成立等号成立.所以所以y yminmin=3+2 .=3+2 .2212sincos2221211sincostan 21tan 2212tantan221tan 4122类型三类型三绝对值不等式的解法绝对值不
12、等式的解法【典例典例3 3】解关于解关于x x的不等式的不等式|2x-1|x|+1.|2x-1|x|+1.【解析解析】当当x0 x0时时,原不等式可化为原不等式可化为-2x+1-x+1,-2x+10,x0,又又x0,x0,故故x x不存在不存在.当当0 x 0 x 时时,原不等式可化为原不等式可化为 1210 x22x 1 x 1,得得 所以所以0 x 0 x 当当x x 时时,原不等式可化为原不等式可化为 得得 x2.x2.综上综上,原不等式的解集为原不等式的解集为x|0 x2.x|0 xg(x)(1)|f(x)|g(x)f(x)g(x)f(x)g(x)或或f(x)-g(x).f(x)-g(
13、x).(2)|f(x)|g(x)(2)|f(x)|g(x)-g(x)f(x)g(x).-g(x)f(x)g(x)(3)|f(x)|g(x)f(x)f(x)2 2g(x)g(x)2 2.(4)|x-a|+|x-b|c(c0)(4)|x-a|+|x-b|c(c0)和和|x-a|+|x-b|c(c0)|x-a|+|x-b|c(c0)型型:零点分段讨论法零点分段讨论法;利用利用|x-a|x-a|的几何意义法的几何意义法;在直角坐标系中作出不等式两边所对应的两个函数在直角坐标系中作出不等式两边所对应的两个函数的图象的图象.【变式训练变式训练】1.1.解不等式解不等式|x+1|x-3|.|x+1|x-3|
14、.【解析解析】方法一方法一:由由|x+1|x-3|x+1|x-3|两边平方得两边平方得(x+1)(x+1)2 2(x-3)(x-3)2 2,所以所以8x8,8x8,所以所以x1,x1,所以原不等式的解所以原不等式的解集为集为x|x1.x|x1.方法二方法二:当当x-1x-1时时,有有-x-1-x+3,-x-1-x+3,此时此时x x无解无解;当当-1x3-1-x+3,x+1-x+3,即即x1,x1,所以此时所以此时1x3;13x3时时,有有x+1x-3x+1x-3成立成立,所以所以x3.x3.所以原不等式解集为所以原不等式解集为x|x1.x|x1.2.2.已知函数已知函数f(x)=|2x+1|
15、-|x|-2.f(x)=|2x+1|-|x|-2.(1)(1)解不等式解不等式f(x)0.f(x)0.(2)(2)若存在实数若存在实数x,x,使得使得f(x)|x|+a,f(x)|x|+a,求实数求实数a a的取值范的取值范围围.【解析解析】(1)(1)函数函数f(x)=|2x+1|-|x|-2f(x)=|2x+1|-|x|-21x 3,x,213x 1,x 0,2x 1,x 0 ,当当x-x-时时,由由-x-30,-x-30,可得可得x-3,x-3,当当-x0-x0),g(x)=x+2.|2x-a|+|2x+1|(a0),g(x)=x+2.(1)(1)当当a=1a=1时时,求不等式求不等式f
16、(x)g(x)f(x)g(x)的解集的解集.(2)(2)若若f(x)g(x)f(x)g(x)恒成立恒成立,求实数求实数a a的取值范围的取值范围.【解析解析】(1)(1)当当a=1a=1时时,不等式不等式f(x)g(x),f(x)g(x),即即|2x-1|+|2x+1|x+2,|2x-1|+|2x+1|x+2,1x,24xx 2111x,x,2222 x 24xx 2 等价于或 或解求得解求得x x无解无解,解求得解求得0 x 0 x 解求得解求得 综上综上,不等式的解集为不等式的解集为 1,212x,23 2x|0 x.3(2)(2)由题意可得由题意可得|2x-a|+|2x+1|x+2|2x
17、-a|+|2x+1|x+2恒成立恒成立,转化为转化为|2x-a|+|2x+1|-x-20|2x-a|+|2x+1|-x-20恒成立恒成立,令令h(x)=|2x-a|+|2x+1|-x-2=h(x)=|2x-a|+|2x+1|-x-2=15x a 3,x,21ax a 1,x,22a3x a 1,x,2 易得易得h(x)h(x)的最小值为的最小值为 -1,-1,令令 -10,-10,解得解得a2.a2.a2a2【方法技巧方法技巧】对于恒成立不等式求参数范围问题的常对于恒成立不等式求参数范围问题的常见类型及其解法见类型及其解法(1)(1)分离参数法分离参数法:运用运用“f(x)af(x)af(x)
18、f(x)maxmaxa,f(x)aa,f(x)af(x)f(x)minmina”a”可解决可解决恒成立中的参数范围问题恒成立中的参数范围问题.(2)(2)更换主元法更换主元法:不少含参数的不等式恒成立问题不少含参数的不等式恒成立问题,若直若直接从主元入手非常困难或不可能时接从主元入手非常困难或不可能时,可转换思维角度可转换思维角度,将主元与参数互换将主元与参数互换,常可得到简捷的解法常可得到简捷的解法.(3)(3)数形结合法数形结合法:在研究曲线交点的恒成立问题时在研究曲线交点的恒成立问题时,若能若能数形结合数形结合,揭示问题所蕴含的几何背景揭示问题所蕴含的几何背景,发挥形象思维发挥形象思维与
19、抽象思维各自的优势与抽象思维各自的优势,可直观地解决问题可直观地解决问题.【变式训练变式训练】1.1.若不等式若不等式|x-a|+|x-2|1|x-a|+|x-2|1对任意实数对任意实数x x恒成立恒成立,求实数求实数a a的取值范围的取值范围.【解析解析】设设y=|x-a|+|x-2|,y=|x-a|+|x-2|,则则y yminmin=|a-2|=|a-2|因为不等式因为不等式|x-a|+|x-2|1|x-a|+|x-2|1对任意对任意x x恒成立恒成立,所以所以|a-2|1,|a-2|1,解得解得a3a3或或a1.a1.2.(20162.(2016南昌高二检测南昌高二检测)已知函数已知函
20、数f(x)=|2x+1|,g(x)=|x|+a.f(x)=|2x+1|,g(x)=|x|+a.(1)(1)当当a=0a=0时时,解不等式解不等式f(x)g(x).f(x)g(x).(2)(2)若存在若存在xR,xR,使得使得f(x)g(x)f(x)g(x)成立成立,求实数求实数a a的取值的取值范围范围.【解析解析】(1)(1)当当a=0a=0时时,由由f(x)g(x)f(x)g(x)得得|2x+1|x|,|2x+1|x|,两边平方整理得两边平方整理得3x3x2 2+4x+10,+4x+10,解得解得x-1x-1或或x-,x-,所以原不等式的解集为所以原不等式的解集为(-,-1 (-,-1 1
21、31,).3(2)(2)由由f(x)g(x)f(x)g(x)得得a|2x+1|-|x|,a|2x+1|-|x|,令令h(x)=|2x+1|-|x|,h(x)=|2x+1|-|x|,即即h(x)=h(x)=故故h(x)h(x)minmin=,=,故可得到实数故可得到实数a a的范围为的范围为 1x 1,x,213x 1,x 0,2x 1,x 0 ,11h()221).2,第二课柯西不等式、排序不等式与数学归纳法【网络体系网络体系】【核心速填核心速填】1.1.二维形式的柯西二维形式的柯西不等式不等式(1)(1)二维形式的柯西不等式二维形式的柯西不等式:_:_._.若若a,b,c,da,b,c,d都
22、是实数都是实数,则则(a(a2 2+b+b2 2)(c)(c2 2+d+d2 2)(ac+bd)(ac+bd)2 2(2)(2)柯西不等式的向量形式柯西不等式的向量形式:_:_._.当且仅当当且仅当 是零向量是零向量,或存或存在实数在实数k,k,使使 =k =k 时时,等号成立等号成立.设设 是两个向量是两个向量,则则|,|(3)(3)二维形式的三角不等式二维形式的三角不等式:设设x x1 1,y,y1 1,x,x2 2,y,y2 2R,R,那么那么_ 22222211221212xyxyxxyy2.2.一般形式的柯西不等式一般形式的柯西不等式设设a a1 1,a,a2 2,a,a3 3,a,
23、an n,b,b1 1,b,b2 2,b,b3 3,b,bn n是实数是实数,则则_._.当且仅当当且仅当b bi i=0(i=1,2,=0(i=1,2,n),n)或存在一个数或存在一个数k,k,使得使得a ai i=kb=kbi i(i=1,2,(i=1,2,n),n)时时,等号成立等号成立.(a(a1 12 2+a+a2 22 2+a+an n2 2)(b)(b1 12 2+b+b2 22 2+b+bn n2 2)(a)(a1 1b b1 1+a+a2 2b b2 2+a+an nb bn n)2 23.3.排序不等式排序不等式设设a a1 1aa2 2aan n,b,b1 1bb2 2b
24、bn n为两组实数为两组实数,c c1 1,c,c2 2,c,cn n是是b b1 1,b,b2 2,b,bn n的任一排列的任一排列,则则a a1 1b bn n+a+a2 2b bn-1n-1+a+an nb b1 1_aa1 1b b1 1+a+a2 2b b2 2+a+an nb bn n.a a1 1c c1 1+a+a2 2c c2 2+a+an nc cn n4.4.数学归纳法数学归纳法一般地一般地,当要证明一个命题对于不小于某正整数当要证明一个命题对于不小于某正整数n n0 0的的所有正整数所有正整数n n都成立时都成立时,可以用以下两个步骤可以用以下两个步骤:(1)(1)证明
25、当证明当_时时,命题成立命题成立.(2)(2)假设当假设当n=k(kNn=k(kN+,且且knkn0 0)时时,命题成立命题成立.证明证明_时时,命题也成立命题也成立.n=nn=n0 0n=k+1n=k+1【易错警示易错警示】关注数学归纳法应用时常出现的三个错误关注数学归纳法应用时常出现的三个错误(1)(1)对假设设而不用对假设设而不用.(2)(2)机械套用数学归纳法中的两个步骤致误机械套用数学归纳法中的两个步骤致误.(3)(3)没有搞清从没有搞清从k k到到k+1k+1的跨度的跨度.1-1-.类型一类型一利用柯西不等式证明不等式利用柯西不等式证明不等式【典例典例1 1】若若n n是不小于是不
展开阅读全文