高中数学课件第二章第11节《变化率与导数、导数的计算》资料.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学课件第二章第11节《变化率与导数、导数的计算》资料.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 变化率与导数、导数的计算 高中数学 课件 第二 11 变化 导数 计算 资料 下载 _其他_数学_高中
- 资源描述:
-
1、1.了解导数概念的实际背景了解导数概念的实际背景.2.理解导数的几何意义理解导数的几何意义.3.(文文)能根据导数定义,求函数能根据导数定义,求函数yc(c为常数为常数),y x,yx2,y 的导数的导数.(理理)能根据导数定义,求函数能根据导数定义,求函数yc(c为常数为常数),y x,yx2,yx3,y ,y 的导数的导数.4.(文文)能利用给出的基本初等函数的导数公式和导数能利用给出的基本初等函数的导数公式和导数 的四则运算法则求简单函数的导数的四则运算法则求简单函数的导数.(理理)能利用给出的基本初等函数的导数公式和导数能利用给出的基本初等函数的导数公式和导数 的四则运算法则求简单函数
2、的导数,能求简单的四则运算法则求简单函数的导数,能求简单 的复合函数的复合函数(仅限于形如仅限于形如f(axb)的复合函数的复合函数)的的 导数导数.1.导数的概念导数的概念(1)函数函数f(x)从从x1到到x2的平均变化率的平均变化率 函数函数f(x)从从x1到到x2的平均变化率为的平均变化率为 ,若若xx2x1,yf(x2)f(x1),则平均变化率可表示,则平均变化率可表示 为为 .(2)f(x)在在xx0处的导数处的导数 函数函数yf(x)在在xx0处的瞬时变化率是处的瞬时变化率是 ,称其为函数,称其为函数yf(x)在在xx0处的导数,记作处的导数,记作 f(x0)或或 ,即,即f(x0
3、)(3)导函数导函数 当当x变化时,变化时,f(x)称为称为f(x)的导函数,则的导函数,则f(x)y2.导数的几何意义导数的几何意义 函数函数yf(x)在在xx0处的导数的几何意义,就是曲处的导数的几何意义,就是曲 线线yf(x)在点在点P(x0,y0)处的切线的处的切线的 ,过点,过点P 的切线方程为:的切线方程为:斜率斜率yy0f(x0)(xx0)原函数原函数导函数导函数f(x)cf(x)xn(nQ*)f(x)sinxf(x)cosxf(x)ax(a0且且a1)f(x)exf(x)logax(a0且且a1)f(x)lnx3.基本初等函数的导数公式基本初等函数的导数公式f(x)0f(x)e
4、xf(x)nxn1f(x)cosxf(x)(a0且且a1)f(x)axIna(a且且a a1)f(x)f(x)-sinx4.导数运算法则导数运算法则 (1)f(x)g(x);(2)f(x)g(x)(3).f(x)g(x)f(x)g(x)f(x)g(x)(g(x)0)5.复合函数的导数复合函数的导数(理理)复合函数复合函数yf(g(x)的导数和函数的导数和函数yf(u),ug(x)的导数间的导数间 的关系为的关系为yx ,即,即y对对x的导数等于的导数等于y对对u的导的导 数与数与u对对x的导数的积的导数的积.f(u)ux1.若若f(x)2x2图象上一点图象上一点(1,2)及附近一点及附近一点(
5、1x,2 y),则则 等于等于 ()A.32xB.4x C.42x D.3x解析:解析:yf(1x)f(1)4x2(x)2,42x.答案:答案:C2.函数函数yxcosxsinx的导数为的导数为 ()A.xsinxB.xsinx C.xcosx D.xcosx解析:解析:y(xcosxsinx)(xcosx)(sinx)cosxxsinxcosxxsinx.答案:答案:B3.曲线曲线yx32x4在点在点(1,3)处的切线的倾斜角为处的切线的倾斜角为 ()A.30 B.45 C.60 D.120解析:解析:设倾斜角为设倾斜角为.y3x22,y|x131221,45.答案:答案:B4.设设f(x)
6、,则,则f(x).解析:解析:f(x)()()()()答案:答案:5.已知点已知点P在曲线在曲线f(x)x4x上,曲线在点上,曲线在点P处的切线平行处的切线平行 于直线于直线3xy0,则点,则点P的坐标为的坐标为.解析:解析:由题意知,函数由题意知,函数f(x)x4x在点在点P处的切线的斜率处的切线的斜率等于等于3,即即f(x0)13,x01,将其代入,将其代入f(x)中可得中可得P(1,0).答案:答案:(1,0)根据导数的定义求函数根据导数的定义求函数yf(x)在点在点x0处导数的方法:处导数的方法:1.求函数的增量求函数的增量yf(x0 x)f(x0);2.求平均变化率求平均变化率 ;3
7、.得导数得导数f(x0).上述过程可简化为:一差、二比、三极限上述过程可简化为:一差、二比、三极限.利用导数的定义求函数利用导数的定义求函数y 的导数的导数.思路点拨思路点拨按照一差、二比、三极限按照一差、二比、三极限.课堂笔记课堂笔记y ,即即y .若将若将“y ”改为改为“y ”呢?呢?解:解:y ,1.运用可导函数求导法则和导数公式,求函数运用可导函数求导法则和导数公式,求函数yf(x)在开区在开区 间间(a,b)内的导数的基本步骤:内的导数的基本步骤:(1)分析函数分析函数yf(x)的结构和特征;的结构和特征;(2)选择恰当的求导法则和导数公式求导;选择恰当的求导法则和导数公式求导;(
8、3)整理得结果整理得结果.2.对较复杂的函数求导时,应先化简再求导,特别是对数函对较复杂的函数求导时,应先化简再求导,特别是对数函 数真数是根式或分式时,可用对数的性质转化真数为有理数真数是根式或分式时,可用对数的性质转化真数为有理 式或整式求解更为方便式或整式求解更为方便.求下列函数的导数:求下列函数的导数:(1)y(3x34x)(2x1);(2)y3xex2xe;(3)Y ;(4)(理理)yln(3x2)e2x1.思路点拨思路点拨化简变形后结合求导法则和求导公式进行求解化简变形后结合求导法则和求导公式进行求解.课堂笔记课堂笔记(1)y(3x34x)(2x1)6x43x38x24x,y24x
展开阅读全文