高中数学-第1章-计数原理-4-简单计数问题课件-北师大版选修23.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学-第1章-计数原理-4-简单计数问题课件-北师大版选修23.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 计数 原理 简单 问题 课件 北师大 选修 23 下载 _选修系列_北师大版_数学_高中
- 资源描述:
-
1、4简单计数问题课前预习学案有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法多少种?1捆绑法先把一般元素排列好,然后把待定元素插排在它们之间或两端的空当中,此法主要解决“_”运用插空法解决“_”时,要同时借助框图和数数法求解从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置即采用“_”的解题原则元素不相邻问题元素不相邻问题先特殊后一般2插空法3占位法4调序法排列组合应用题的主要类型和常用方法排列组合应用题大致可分为三大类:不带限制
2、条件的排列或组合题,带有约束条件的排列或组合题;排列与组合的综合题解此类问题常用的方法有:(1)相邻元素的排列,可以采用“整体到局部”的排法,就是将相邻的元素当成“一个”元素进行排列,然后再局部排列,分作两步(2)元素间隔排列应用题,一般采用“插空法”(3)含有特殊元素和特殊位置的排列,组合应用题,常采用“特殊元素法”,从元素为主出发,先安排特殊元素;从位置为主出发,先安排好特殊位置上的元素,结合排除法解决此类问题(4)指标问题采用“隔板法”(5)有关“分堆”与“到位”应用问题常采用“分组法”与“分配法”若只分堆,不指定到具体位置,则需注意平均分的情况(6)相邻类排列应用题常采用“捆绑法”解决
3、,就是将几个相邻元素先抽出进行排列再将它们视为一个元素参与下一步的排列,此法是法(1)的逆向思维应用排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:以元素为主,应先满足特殊元素的要求,再考虑其他元素;以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数前两种方法叫直接解法,后一种方法叫间接解法,求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理:然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答答案:A答案:A3从集合1,2,3和1
展开阅读全文