书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型2014年高考数学(新课标)一轮复习考点热身训练:第二章函数、导数及其应用(单元总结与测试).doc

  • 上传人(卖家):仙人指路
  • 文档编号:5702958
  • 上传时间:2023-05-04
  • 格式:DOC
  • 页数:11
  • 大小:899.27KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2014年高考数学(新课标)一轮复习考点热身训练:第二章函数、导数及其应用(单元总结与测试).doc》由用户(仙人指路)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2014 年高 数学 新课 一轮 复习 考点 热身 训练 第二 函数 导数 及其 应用 单元 总结 测试 下载 _一轮复习_高考专区_数学_高中
    资源描述:

    1、 第二章函数、导数及其应用(单元总结与测试)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中可以表示以M=x|0x1为定义域,以N=y|0y1为值域的函数的图象是( )2.函数f(x)对任意xR,恒有f(x+2)=-f(x),且f(1)=2,则f(11)=( )(A)-2(B)2(C)0(D)13.(2011广东高考)设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( )(A)f(x)+|g(x)|是偶函数(B)f(x)-|g(x)|是奇函数(C)|f(x)|+g(x)是偶函数(D)|f(x)|-g(

    2、x)是奇函数4已知函数f(x)=ax(a0,a1)是定义在R上的单调递减函数,则函数g(x)=loga(x+1)的图象大致是( )5(2013武汉模拟)定积分的值为( )(A)-1(B)1(C)e2-1(D)e26设函数f(x)xlnx(x0),则yf(x)( )(A)在区间(,1),(1,e)内均有零点(B)在区间(,1),(1,e)内均无零点(C)在区间(,1)内有零点,在区间(1,e)内无零点(D)在区间(,1)内无零点,在区间(1,e)内有零点7(预测题)已知函数f(x)的导函数为f(x),且满足f(x)=2xf(1)+lnx,则f(1)=( )(A)-e(B)-1(C)1(D)e8已

    3、知函数f(x)的定义域为-1,1,图象过点(0,5),它的导函数f(x)4x3-4x,则当f(x)取得最大值-5时,x的值应为( )(A)-1(B)0(C)1(D)19设函数f(x)=xsinx,若x1,x2,且f(x1)f(x2),则下列不等式恒成立的是( )(A)x1x2(B)x1x2(C)x1+x20(D)x12x2210(2011湖南高考)已知函数f(x)=ex-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为( )(A)2-,2+(B)(2-,2+)(C)1,3(D)(1,3)二、填空题(本大题共5小题,每小题4分,共20分.请把正确答案填在题中横线上)11计

    4、算(lg-lg25)=_.12已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为_13.(2013南平模拟)函数f(x)=2x3-3x2+10的单调递减区间为_.14函数f(x)=(x+a)3对任意tR,总有f(1+t)=-f(1-t),则f(2)+f(-2)等于_.15(2011四川高考)函数f(x)的定义域为A,若x1,x2A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(xR)是单函数.下列命题:函数f(x)=x2(xR)是单函数;若f(x)为单函数,x1,x2A且x1x2,则f(x1)f(x2);若f:AB为单函数,则对于任意bB,

    5、A中至多有一个元素与之对应;函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是_.(写出所有真命题的编号)三、解答题(本大题共6小题,共80分.解答时应写出必要的文字说明、证明过程或演算步骤)16(13分)求下列关于x的函数的定义域和值域:(1) (2)y=log2(-x2+2x);(3)x012345y23456717(13分)(易错题)两个二次函数f(x)=x2+bx+c与g(x)=-x2+2x+d的图象有唯一的公共点P(1,-2)(1)求b,c,d的值;(2)设F(x)=(f(x)+m)g(x),若F(x)在R上是单调函数,求m的取值范围,并指出F(x)是单调递增函

    6、数,还是单调递减函数18(13分)(2011北京高考)已知函数(1)求f(x)的单调区间;(2)若对于任意的x(0,+),都有求k的取值范围19(13分)某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0x1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元).(1)写出y与x的函数关系式;(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.20.(14分)(2013宁德模拟)定义

    7、在R上的单调函数f(x)满足f(3)=log23且对任意x,yR都有f(x+y)=f(x)+f(y).(1)求证:f(x)为奇函数;(2)若f(k3x)+f(3x-9x-2)0)(1)求g(x)的表达式;(2)若存在x(0,+),使f(x)0成立,求实数m的取值范围;(3)设1me,H(x)=f(x)-(m+1)x,求证:对于任意x1,x21,m,恒有|H(x1)-H(x2)|1.答案解析1.【解析】选C.由题意知,自变量的取值范围是0,1,函数值的取值范围也是0,1,故可排除A、B;再结合函数的定义,可知对于集合M中的任意x,N中都有唯一的元素与之对应,故排除D.2.【解析】选A.f(x+2

    8、)=-f(x),f(x+4)=-f(x+2)=f(x),即周期为4,f(11)=f(3)=f(1+2)=-f(1)=-2.3.【解析】选A.g(x)是奇函数,其图象关于原点对称,|g(x)|的图象关于y轴对称,是偶函数,又f(x)为偶函数,f(x)+|g(x)|是偶函数.【方法技巧】函数奇偶性与函数图象的关系(1)函数的奇偶性,揭示了函数图象的对称性.已知函数的奇偶性可得函数图象的对称性;反之,已知函数图象的对称性可得函数的奇偶性.(2)从图象判断函数的奇偶性是很有效的方法.利用图象变换,可以很容易地画出形如|f(x)|或f(|x|)的函数图象,进而可判断函数的奇偶性.4【解题指南】由指数函数

    9、的单调性可得a的取值范围,再判断函数g(x)=loga(x+1)的图象.【解析】选D.由题可知0a0的图象,可知g(x)与h(x)的图象在(,1)内无交点,在(1,e)内有1个交点,故选D.【变式备选】已知函数则关于x的方程f(x)=log2x解的个数为( )(A)4(B)3(C)2(D)1【解析】选B.在同一直角坐标系中画出y=f(x)与y=log2x的图象,从图象中可以看出两函数图象有3个交点,故其解有3个.7【解析】选B.f(x)=2f(1)+,令x=1得f(1)=2f(1)+1,f(1)=-1,故选B8【解析】选B.易知f(x)=x4-2x2-5,f(x)=0时x=0或x=1,又因为定

    10、义域为-1,1,只有f(0)=-5,所以x=0.9【解析】选D.显然f(x)为偶函数,当x(0, 时,f(x)=sinx+xcosx0,f(x)在(0, 上单调递增.又f(x1)f(x2)f(|x1|)f(|x2|)|x1|x2|x12x2210【解析】选B.f(a)-1,g(b)-1,-b2+4b-3-1,b2-4b+20,2-b2+.故选B.11【解析】(lg-lg25)=答案:-2012【解析】设切点为(x0,x0+1),则解得a=2.答案:213.【解析】f(x)=6x2-6x,由f(x)0得0x0,0x2.函数的定义域为(0,2).又当x(0,2)时,-x2+2x(0,1,log2(

    11、-x2+2x)(-,0.即函数的值域为(-,0.(3)函数的定义域为0,1,2,3,4,5,函数的值域为2,3,4,5,6,7.17【解题指南】(1)把点P的坐标代入两函数解析式,结合x2+bx+c=-x2+2x+d有唯一解,可求得b,c,d,(2)若F(x)在R上是单调函数,则F(x)在R上恒有F(x)0或F(x)0.【解析】(1)由已知得化简得且x2+bx+c=-x2+2x+d,即2x2+(b-2)x+c-d=0有唯一解,所以=(b-2)2-8(c-d)=0,即b2-4b-8c-20=0,消去c得b2+4b+4=0,解得b=-2,c=-1,d=-3.(2)由(1)知f(x)=x2-2x-1

    12、,g(x)=-x2+2x-3,故g(x)=-2x+2,F(x)=(f(x)+m)g(x)=(x2-2x-1+m)(-2x+2)=-2x3+6x2-(2+2m)x+2m-2,F(x)=-6x2+12x-2-2m.若F(x)在R上为单调函数,则F(x)在R上恒有F(x)0或F(x)0成立因为F(x)的图象是开口向下的抛物线,所以F(x)0在R上恒成立,所以=122+24(-2-2m)0,解得m2,即m2时,F(x)在R上为单调递减函数18【解析】(1) 令f(x)=0,得x=k.当k0时,f(x)与f(x)的情况如下:x(-,-k)-k(-k,k)k(k,+)f(x)+0-0+f(x)4k2e-1

    13、0所以f(x)的单调递增区间是(-,-k)和(k,+);单调递减区间是(-k,k).当k0时,f(x)与f(x)的情况如下:x(-,-k)k(-k,k)k(-k,+)f(x)-0+0-f(x)04k2e-1所以f(x)的单调递减区间是(-,k)和(-k,+);单调递增区间是(k,-k).(2)当k0时,因为所以不会有x(0,+),f(x).当k0时,由(1)知f(x)在(0,+)上的最大值是所以x(0,+),f(x),等价于f(-k)= 解得k0.故对x(0,+),f(x)时,k的取值范围是,0).19【解析】(1)改进工艺后,每件产品的销售价为20(1+x)元,月平均销售量为a(1-x2)件

    14、,则月平均利润y=a(1-x2)20(1+x)-15(元),y与x的函数关系式为y=5a(1+4x-x2-4x3)(0x1).(2)y=5a(4-2x-12x2),令y=0得x1=,x2=-(舍),当0x0;x1时y0,函数y=5a(1+4x-x2-4x3)(0x1)在x=处取得最大值.故改进工艺后,产品的销售价为20(1+)=30元时,旅游部门销售该纪念品的月平均利润最大.【变式备选】某地建一座桥,两端的桥墩已建好,这两个桥墩相距m米,余下的工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为x米的相邻两墩之间的桥面工程费用为(2+)x万元假设桥墩等距离分布,

    15、所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元(1)试写出y关于x的函数关系式;(2)当m=640米时,需新建多少个桥墩才能使y最小?【解析】(1)设需要新建n个桥墩,(n+1)x=m,即n=-1,所以y=f(x)=256n+(n+1)(2+)x=256(-1)+ (2+)x(2)由(1)知,令f(x)=0,得所以x=64,当0x64时,f(x)0,f(x)在区间(0,64)上为减函数;当64x0,f(x)在区间(64,640)上为增函数,所以f(x)在x=64处取得最小值,此时,故需新建9个桥墩才能使y最小20.【解析】(1)f(x+y)=f(x)+f(y)(x,yR), 令x

    16、=y=0,代入式,得f(0+0)=f(0)+f(0),即f(0)=0.令y=-x,代入式,得f(x-x)=f(x)+f(-x),又f(0)=0,则有0f(x)+f(-x).即f(-x)=-f(x)对任意xR成立,所以f(x)是奇函数.(2)f(3)=log230,即f(3)f(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)知f(x)是奇函数.所以有f(k3x)-f(3x-9x-2)=f(-3x+9x+2),即k3x0对任意xR成立.令t=3x0,问题等价于t2-(1+k)t+20对任意t0恒成立.令g(t)=t2-(1+k)t+2,其对称轴.当0即k0,符合题意;当=

    17、0即k=-1时,g(t)=t2+2,对任意t0,g(t)0恒成立;当0时,对任意t0,g(t)0恒成立,解得-1k-1+,综上所述当k-1+时,f(k3x)+f(3x-9x-2)0).当m0时,由对数函数的性质知,f(x)的值域为R;当m=0时,f(x)=,对任意x0,f(x)0恒成立;当m0使f(x)0成立,实数m的取值范围是(-,-e(0,+)(3)由题知H(x)=x2-(m+1)x+mlnx, 因为对任意x1,m,所以H(x)在1,m内单调递减.于是|H(x1)-H(x2)|H(1)-H(m)=m2-mlnm-.要使|H(x1)-H(x2)|1恒成立,则需m2-mlnm-1成立,即m-lnm-0.记则所以函数h(m)=m-lnm-在(1,e上是单调增函数,所以h(m)h(e)=-1-=0,故命题成立.第 11 页 共 11 页

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2014年高考数学(新课标)一轮复习考点热身训练:第二章函数、导数及其应用(单元总结与测试).doc
    链接地址:https://www.163wenku.com/p-5702958.html
    仙人指路
         内容提供者      个人认证 实名认证
    相关资源 更多
  • 2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx2025高考数学一轮复习-第8章-第8节 直线与圆锥曲线ppt课件.pptx
  • 2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx2025高考数学一轮复习-第1章-第5节 一元二次方程、不等式ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx2025高考数学一轮复习-多选题加练(四)三角函数、解三角形ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx2025高考数学一轮复习-第10章-第7节 离散型随机变量及其分布列、数字特征ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第一课时 不等式恒(能)成立问题ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx2025高考数学一轮复习-多选题加练(五)平面向量ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第一课时 求值与证明ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(二)圆锥曲线中的综合问题-第二课时 定点、定线与定值ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx2025高考数学一轮复习-多选题加练(三)导数及其应用ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第二课时 构造函数证明不等式ppt课件.pptx
  • 2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx2025高考数学一轮复习-高考难点突破系列(一)导数中的综合问题-第三课时 利用导数研究函数的零点ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx2025高考数学一轮复习-第10章-第9节 概率与统计的综合问题ppt课件.pptx
  • 2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx2025高考数学一轮复习-第10章-第8节 二项分布、超几何分布与正态分布ppt课件.pptx
  • 2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx2025高考数学一轮复习-多选题加练(九)统计与成对数据的统计分析ppt课件.pptx
  • Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库