2013中考总结复习冲刺练:线段、角的计算与证明问题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2013中考总结复习冲刺练:线段、角的计算与证明问题.doc》由用户(仙人指路)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013 中考 总结 复习 冲刺 线段 计算 证明 问题
- 资源描述:
-
1、2013中考总结复习冲刺练:线段、角的计算与证明问题【前言】 中考的解答题一般是分两到三部分的。第一部分基本上都是一些简单题或者中档题,目的在于考察基础。第二部分往往就是开始拉分的中,难题了。大家研究今年的北京一模就会发现,第二部分,或者叫难度开始提上来的部分,基本上都是以线段,角的计算与证明开始的。城乡18个区县的一模题中,有11个区第二部分第一道题都是标准的梯形,四边形中线段角的计算证明题。剩下的7个区县题则将线段角问题与旋转,动态问题结合,放在了更有难度的倒数第二道乃至压轴题当中。可以说,线段角问题就是中考数学有难度题的排头兵。对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个
2、做题过程中士气,军心的影响。在这个专题中,我们对各区县一模真题进行总结归纳,分析研究,来探究线段,角计算证明问题的解题思路。第一部分 真题精讲【例1】(2012,崇文,一模)如图,梯形中,求的长【思路分析】线段,角的计算证明基本都是放在梯形中,利用三角形全等相似,直角三角形性质以及勾股定理等知识点进行考察的。所以这就要求我们对梯形的性质有很好的理解,并且熟知梯形的辅助线做法。这道题中未知的是AB,已知的是AD,BC以及BDC是等腰直角三角形,所以要把未知的AB也放在已知条件当中去考察.做AE,DF垂直于BC,则很轻易发现我们将AB带入到了一个有大量已知条件的直角三角形当中.于是有解如下.【解析
3、】作于于 ,四边形是矩形 是的边上的中线 在中,【例2】(2012,海淀,一模)已知:如图,在直角梯形中,于点O,求的长. 【思路分析】 这道题给出了梯形两对角线的关系.求梯形上底.对于这种对角线之间或者和其他线段角有特殊关系(例如对角线平分某角)的题,一般思路是将对角线提出来构造一个三角形.对于此题来说,直接将AC向右平移,构造一个以D为直角顶点的直角三角形.这样就将AD转化成了直角三角形中斜边被高分成的两条线段之一,而另一条线段BC是已知的.于是问题迎刃而解.【解析】过点作交的延长线于点. . 于点, . . , 四边形为平行四边形. . , . , . 此题还有许多别的解法,例如直接利用
4、直角三角形的两个锐角互余关系,证明ACD和 DBC相似,从而利用比例关系直接求出CD。有兴趣的考生可以多发散思维去研究。【例3】(2012,东城,一模)如图,在梯形中,为中点,求的长度【思路分析】 这道题是东城的解答题第二部分第一道,就是我们所谓提难度的门槛题。乍看之下好象直接过D做垂线之类的方法不行.那该怎样做辅助线呢?答案就隐藏在E是中点这个条件中.在梯形中,一腰中点是很特殊的.一方面中点本身是多对全等三角形的公共点,另一方面中点和其他底,腰的中点连线就是一些三角形的中线,利用中点的比例关系就可以将已知条件代入.比如这道题,过中点E做BC的垂线,那么这条垂线与AD延长线,BC就构成了两个全
5、等的直角三角形.并且这两个直角三角形的一个锐角的正切值是已经给出的.于是得解.【解析】过点作的垂线交于点,交的延长线于点. 在梯形中,是的中点,在和中, . ,.在中,.在中,【总结】 以上三道真题,都是在梯形中求线段长度的问题.这些问题一般都是要靠做出精妙的辅助线来解决.辅助线的总体思路就是将梯形拆分或者填充成矩形+三角形的组合,从而达到利用已知求未知的目的.一般来说,梯形的辅助线主要有以下5类:过一底的两端做另一底的垂线,拆梯形为两直角三角形+ 一矩形平移一腰,分梯形为平行四边形+ 三角形延长梯形两腰交于一点构造三角形平移对角线,转化为平行四边形+三角形连接顶点与中点延长线交于另一底延长线
6、构筑两个全等三角形或者过中点做底边垂线构筑两个全等的直角三角形以上五种方法就是梯形内线段问题的一般辅助线做法。对于角度问题,其实思路也是一样的。通过做辅助线使得已知角度通过平行,全等方式转移到未知量附近。之前三道例题主要是和线段有关的计算。我们接下来看看和角度有关的计算与证明问题。【例4】 (2012,延庆,一模)如图,在梯形中,平分,过点作,交的延长线于点,且,求的长【思路分析】 此题相对比较简单,不需要做辅助线就可以得出结果。但是题目中给的条件都是此类角度问题的基本条件。例如对角线平分某角,然后有角度之间的关系。面对这种题目还是需要将已知的角度关系理顺。首先根据题目中条件,尤其是利用平行线
展开阅读全文