秘传高考数学通用解题模型分解(DOC 24页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《秘传高考数学通用解题模型分解(DOC 24页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 秘传高考数学通用解题模型分解DOC 24页 秘传 高考 数学 通用 解题 模型 分解 DOC 24 下载 _各科综合_高中
- 资源描述:
-
1、秘传高考通用解题模型(I) 1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。 中元素各表示什么? A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。 空集是一切集合的子集,是一切非空集合的真子集。 显然,这里很容易解出A=-1,3.而B最多只有一个元素。故B只能是-1或者3。根据条件,可以得到a=-1,a=1/3. 但是, 这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。3. 注意下列性质: 要知道它的来历:若B为A的
2、子集,则对于元素a1来说,有2种选择(在或者不在)。同样,对于元素a2, a3,an,都有2种选择,所以,总共有种选择, 即集合A有个子集。当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为 (3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法) 的取值范围。注意,有时候由集合本身就可以得到大量信息,做题时不要错过; 如告诉你函数f(x)=ax2+bx+c(a0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1.或者,我说在上 ,也应该马上可以想到m,n实际上就是方程
3、的2个根5、熟悉命题的几种形式、 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。) 原命题与逆否命题同真、同假;逆命题与否命题同真同假。6、熟悉充要条件的性质(高考经常考) 满足条件,满足条件,若 ;则是的充分非必要条件;若 ;则是的必要非充分条件;若 ;则是的充要条件;若 ;则是的既非充分又非必要条件; 7. 对映射的概念了解吗?映射f:AB,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象。)注意映射个数的求法。如集合A中有m个元素,集合B中有n个元素,则从A到B的映射个数有nm个。如:若,;问:到的映
4、射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。函数的图象与直线交点的个数为 个。 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)相同函数的判断方法:表达式相同;定义域一致 (两点必须同时具备) 9. 求函数的定义域有哪些常见类型? 函数定义域求法:l 分式中的分母不为零;l 偶次方根下的数(或式)大于或等于零;l 指数式的底数大于零且不等于一;l 对数式的底数大于零且不等于一,真数大于零。l 正切函数 l 余切函数 l 反三角函数的定义域函数yarcsinx的定义域是 1, 1 ,值域是,函数yarccosx的定义域是 1, 1 ,值域是
5、 0, ,函数yarctgx的定义域是 R ,值域是.,函数yarcctgx的定义域是 R ,值域是 (0, ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量的范围,再取他们的交集,就得到函数的定义域。10. 如何求复合函数的定义域? 义域是_。 复合函数定义域的求法:已知的定义域为,求的定义域,可由解出x的范围,即为的定义域。例 若函数的定义域为,则的定义域为 。分析:由函数的定义域为可知:;所以中有。解:依题意知: 解之,得 的定义域为11、函数值域的求法1、直接观察法对于一些比较简单的函数,其值域可通过观察得到。例 求函数y=的值域2、配方法配方法是求二次
6、函数值域最基本的方法之一。例、求函数y=-2x+5,x-1,2的值域。3、判别式法对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。例 求函数y=值域。5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。我们所说的单调性,最常用的就是三角函数的单调性。例 求函数y=,的值域。6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容例求函数y=(2x10)的值
7、域7、换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型。换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。例 求函数y=x+的值域。8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。例:已知点P(x.y)在圆x2+y2=1上, 例求函数y=+的值域。解:原函数可化简得:y=x-2+x+8 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。由上图可知:当点P在线段AB上时,y=x-2+x+8=AB=10当点P在线段AB的
8、延长线或反向延长线上时,y=x-2+x+8AB=10故所求函数的值域为:10,+)例求函数y=+ 的值域解:原函数可变形为:y=+ 上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y=AB=,故所求函数的值域为,+)。例求函数y=-的值域解:将函数变形为:y=-上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差。即:y=AP-BP由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P,则构成ABP,根据三角形两边之差小于第三边,有 AP-BPAB= 即:-y(2)当点
9、P恰好为直线AB与x轴的交点时,有 AP-BP=AB= 。综上所述,可知函数的值域为:(-,-)。注:求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。9 、不等式法利用基本不等式a+b2,a+b+c3(a,b,c),求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。例:倒数法有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况例 求函数y=的值域多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先
10、考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不要犯我当年的错误,与到手的满分失之交臂 13. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (反解x;互换x、y;注明定义域) 在更多时候,反函数的求法只是在选择题中出现,这就为我们这些喜欢偷懒的人提供了大方便。请看这个例题:(2004.全国理)函数的反函数是( B )Ay=x22x+2(x1)By=x22x+2(x1)Cy=x22x (x=1.
11、 排除选项C,D.现在看值域。原函数至于为y=1,则反函数定义域为x=1, 答案为B.我题目已经做完了, 好像没有动笔(除非你拿来写*书)。思路能不能明白呢?14. 反函数的性质有哪些? 反函数性质:1、 反函数的定义域是原函数的值域 (可扩展为反函数中的x对应原函数中的y)2、 反函数的值域是原函数的定义域(可扩展为反函数中的y对应原函数中的x)3、 反函数的图像和原函数关于直线=x对称(难怪点(x,y)和点(y,x)关于直线y=x对称 互为反函数的图象关于直线yx对称; 保存了原来函数的单调性、奇函数性; 由反函数的性质,可以快速的解出很多比较麻烦的题目,如(04. 上海春季高考)已知函数
12、,则方程的解_.1对于这一类题目,其实方法特别简单,呵呵。已知反函数的y,不就是原函数的x吗?那代进去阿,答案是不是已经出来了呢?(也可能是告诉你反函数的x值,那方法也一样,呵呵。 自己想想,不懂再问我 15 . 如何用定义证明函数的单调性? (取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得x1,x2,找出f(x1),f(x2)之间的大小关系可以变形为求的正负号或者与1的关系(2)参照图象:若函数f(x)的图象关于点(a,b)对称,函数f(x)在关于点(a,0)的对称区间具有相同的单调性; (特例:奇函数)若函数f(x)的图象关于直线xa对称,则函数f(x)在
展开阅读全文