书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型历年高考数学真题汇编专题16-以基本不等式为背景的应用题(解析版)(DOC 15页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5700264
  • 上传时间:2023-05-04
  • 格式:DOCX
  • 页数:16
  • 大小:374.37KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《历年高考数学真题汇编专题16-以基本不等式为背景的应用题(解析版)(DOC 15页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    历年高考数学真题汇编专题16-以基本不等式为背景的应用题解析版DOC 15页 历年 高考 数学 汇编 专题 16 基本 不等式 背景 应用题 解析 DOC 15 下载 _各科综合_高中
    资源描述:

    1、历年高考数学真题汇编专题16 以基本不等式为背景的应用题1、【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买吨,运费为6万元/次,一年的总存储费用为万元要使一年的总运费与总存储费用之和最小,则的值是_【答案】30【解析】总费用为,当且仅当,即时等号成立在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误2、【2010年高考江苏卷】某兴趣小组要测量电视塔AE的高度H(单位:m)示意图如图所示,垂直放置的标杆BC的高度h4 m,仰角A

    2、BE,ADE.(1) 该小组已测得一组,的值,tan1.24,tan1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,发现适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度若电视塔的实际高度为125 m,试问d为多少时,最大?规范解答 (1) 由AB,BD,AD及ABBDAD,得,解得H124.因此算出的电视塔的高度H是124 m.(2) (1) 由题知dAB,则tan.由ABADBD,得tan,所以tan(),当且仅当d55时取等号又0,所以当d55时,tan()的值最大因为00)表示的曲线上,其中k与发射方向有关炮的射程是指炮弹落地点的横坐标(1) 求

    3、炮的最大射程;(2) 设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2 km,试问它的横坐标a不超过多少时,炮弹可以击中它?请说明理由本小题主要考查函数、方程和基本不等式等基础知识,考查数学阅读能力和解决实际问题的能力满分14分规范解答 (1)令y0,得kx(1k2)x20,由实际意义和题设条件知x0,k0,故x10,当且仅当k1时取等号所以炮的最大射程为10km.(2) 因为a0,所以炮弹可击中目标等价于存在k0,使3.2ka(1k2)a2成立,即关于k的方程a2k220aka2640有正根,所以判别式(20a)24a2(a264)0,解得a6,所以0a6.所以当a不超过6km时,炮

    4、弹可击中目标一、解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:二、在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.运用基本不等式解决应用题一定要注意满足三个条件:一、正;二、定;三、相等。题型一、与几何体有关的应用题以几何为载体的应用题常见与圆、扇形等特

    5、色的图形,此类问题的关键是把各个线段表示出来,进二列出函数的解析式,与几何体有关的导数问题,常常涉及到表面积与体积的问题,解题关键就是通过引入参数表示表面积或者体积,然后运用导数进行求解。例1、(2016常州期末)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m,三块矩形区域的前、后与内墙各保留1 m宽的通道,左、右两块矩形区域分别与相邻的左、右内墙保留3 m宽的通道,如图设矩形温室的室内长为x(m),三块种植植物的矩形区域的总面积为S(m2)(1) 求S关于x的函数关

    6、系式;(2) 求S的最大值规范解答 (1) 由题设得S(x8)2x916,x(8,450)(6分)(2) 因为8x450,所以2x2 240,(8分)当且仅当x60时等号成立(10分)从而S676.(12分)答:当矩形温室的室内长为60 m时,三块种植植物的矩形区域的总面积最大,最大为676 m2.(14分)例2、(2017南京、盐城二模)在一张足够大的纸板上截取一个面积为3 600平方厘米的矩形纸板ABCD,然后在矩形纸板的四个角上切去边长相等的小正方形,再把它的边沿虚线折起,做成一个无盖的长方体纸盒(如图)设小正方形边长为x厘米,矩形纸板的两边AB,BC的长分别为a厘米和b厘米,其中ab.

    7、(1) 当a90时,求纸盒侧面积的最大值;(2) 试确定a,b,x的值,使得纸盒的体积最大,并求出最大值 思路分析 (1) 纸盒侧面积S(x)是关于x的函数,即求S(x)max.(2) 先猜想并证明ab时,底面积取最大,这样问题变为求体积关于x的函数的最大值规范解答 (1) 当a90时,b40,纸盒的底面矩形的长为902x,宽为402x,周长为2608x.所以纸盒的侧面积S(x)(2608x)x8x2260x,其中x(0,20),(3分)故S(x)maxS.答:当a90时,纸盒侧面积的最大值为平方厘米(6分)(2) 纸盒的体积V(a2x)(b2x)x,其中x,ab0,且ab3 600.(8分)

    8、因为(a2x)(b2x)ab2(ab)x4x2ab4x4x24(x260x900),当且仅当ab60时取等号,所以V4(x360x2900x),x(0,30)(10分)记f(x)4(x360x2900x),x(0,30),则f(x)12(x10)(x30),令f(x)0,得x10,列表如下:x(0,10)10(10,30)f(x)0f(x)极大值由上表可知,f(x)的极大值是f(10)16 000,也是最大值(12分)答:当ab60,且x10时,纸盒的体积最大,最大值为16 000 立方厘米(14分)例3、(2016盐城三模)一位创业青年租用了一块边长为1百米的正方形田地ABCD来养蜂、产蜜与

    9、售蜜,他在正方形的边BC,CD上分别取点E,F(不与正方形的顶点重合),连结AE,EF,FA,使得EAF45. 现拟将图中阴影部分规划为蜂源植物生长区,AEF部分规划为蜂巢区,CEF部分规划为蜂蜜交易区. 若蜂源植物生长区的投入约为2105元/百米2,蜂巢区与蜂蜜交易区的投入约为105元/百米2,则这三个区域的总投入最少需要多少元? 规范解答 设阴影部分面积为S,三个区域的总投入为T.则T2105S105(1S)105(S1),从而只要求S的最小值即可(2分)设EAB(045),在ABE中,因为AB1,B90,所以BEtan,则SABEABBEtan,(4分)又DAF45,同理得SADFtan

    10、(45),(6分)所以Stantan(45)tan,(8分)令xtan(0,1),S (10分) (22)1,当且仅当x1,即x1时取等号(12分)从而三个区域的总投入T的最小值约为105元(14分)题型二、与利润等有关的应用题与利润有关的问题关键是要认真审题,只有在审题的基础上才可以正确列出函数的解析式,要特别注意函数的定义域和单位的统一。例4、(2019南京学情调研)销售甲种商品所得利润是P万元,它与投入资金t万元的关系有经验公式P;销售乙种商品所得利润是Q万元,它与投入资金t万元的关系有经验公式Qbt,其中a,b为常数现将3万元资金全部投入甲、乙两种商品的销售;若全部投入甲种商品,所得利

    11、润为万元;若全部投入乙种商品,所得利润为1万元若将3万元资金中的x万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为f(x)万元(1) 求函数f(x)的解析式;(2) 怎样将3万元资金分配给甲、乙两种商品,才能使得利润总和最大,并求最大值 规范解答 (1)由题意P,Qbt,故当t3时,P,Q3b1. (3分)解得a3,b. (5分)所以P,Qt.从而f(x),x. (7分)(2)由(1)可得f(x). (9分)故2,当且仅当,即x2时取等号从而f(x)2. (11分)所以f(x)的最大值为 .答:分别投入2万元、1万元销售甲、乙两种商品时,所得利润总和最大,最大利润是万元(14

    12、分)例5 (2017苏锡常镇二模)某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元此外,还需要投入其他成本(如施肥的人工费等)百元已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求记该棵水蜜桃树获得的利润为(单位:百元)(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?解析(1)()(2)法一:当且仅当时,即时取等号故答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元法二:,由得,故当时,在上单调递增

    13、;当时,在上单调递减;故答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元例6、(2016镇江期末)过去的2013年,我国多地区遭遇了雾霾天气,引起口罩热销某品牌口罩原来每只成本为6元,售价为8元,月销售5万只(1) 据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润月销售总收入月总成本),该口罩每只售价最多为多少元?(2) 为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价x(x9)元,并投入(x9)万元作为营销策略改革费用据市场调查,每只售价每提高0.5元,月销售量将相应减少万只,则当每只售价x为多少时,下

    14、月的月总利润最大?并求出下月最大总利润 规范解答 (1) 设每只售价为x元,则月销售量为万只由已知得(x6)(86)5,(3分)所以x2x0,即2x253x2960.(4分)解得8x.(5分)即每只售价最多为18.5元(6分)(2) 下月的月总利润y(x6)(x9)(9分) x x .(10分)因为x9,所以2,(12分)当且仅当,即x10,等号成立,所以ymin14.(13分)答:当x10时,下月的月总利润最大,且最大利润为14万元(14分)1、.某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的维修费各年为第一年2千元,第二年4千元,第三年6千元,而且以后以每年2

    15、千元的增量逐年递增,则这种生产设备最多使用_年报废最合算(即使用多少年的年平均费用最少).答案10解析设使用x年的年平均费用为y万元.由已知,得y,即y1(xN*).由基本不等式知y12 3,当且仅当,即x10时取等号.因此使用10年报废最合算,年平均费用为3万元.2、为建设美丽乡村,政府欲将一块长12百米,宽5百米的矩形空地建成生态休闲园,园区内有一景观湖(图中阴影部分).以所在直线为轴,的垂直平分线为轴,建立平面直角坐标系(如图所示).景观湖的边界曲线符合函数模型,园区服务中心在轴正半轴上,百米.(1)若在点和景观湖边界曲线上一点之间修建一条休闲长廊,求的最短长度;(2)若在线段上设置一园

    16、区出口,试确定的位置,使通道最短.解:(1)设直线(其中一定存在),代入,得,化简为.设,则, 所以 令,则,当且仅当时等号成立,即时成立.综上,的最短长度为百米 (2)当直线与边界曲线相切时,最短. 若直线斜率不存在,则直线方程为,不符合题意;若直线斜率存在,设PQ方程为,代入,化简得.当时,方程有唯一解(舍去), 当时,因为直线与曲线相切,所以,解得或(舍去),此时直线方程为, 令,得,即点在线段上且距离轴百米.答:当点在线段上且距离轴百米,通道最短. 3、(2016无锡期末)某公司生产的某批产品的销售量P万件(生产量与销售量相等)与促销费用x万元满足P(其中0xa,a为正常数)已知生产该

    17、批产品还需投入成本6万元(不含促销费用),产品的销售价格定为元/件(1) 将该产品的利润y万元表示为促销费用x万元的函数;(2) 当促销费用投入多少万元时,该公司的利润最大?规范解答 (1) 由题意知,yPx6.(3分)将P代入化简得y19x(0xa)(5分)(2) y2222310,当且仅当x2,即x2时,上式取等号(8分)所以当a2时,促销费用投入2万元时,厂家的利润最大;(9分)由y19x,得y,当x0,此时函数y在0,2上单调递增,所以当a2时,函数y在0,a上单调递增,(11分)所以当xa时,函数有最大值即促销费用投入a万元时,厂家的利润最大(12分)综上,当a2时,促销费用投入2万

    18、元,厂家的利润最大;当a2时,促销费用投入a万元,厂家的利润最大(14分)4、(2017南通一调)如图,某机械厂要将长6 m,宽2 m的长方形铁皮ABCD进行裁剪已知点F为AD的中点,点E在边BC上,裁剪时先将四边形CDFE沿直线EF翻折到MNFE处(点C,D分别落在直线BC下方点M,N处,FN交边BC于点P),再沿直线PE裁剪(1) 当EFP时,试判断四边形MNPE的形状,并求其面积;(2) 若使裁剪得到的四边形MNPE面积最大,请给出裁剪方案,并说明理由规范解答 (1) 当EFP时,由条件得EFPEFDFEP.所以FPE.所以FNBC,四边形MNPE为矩形(3分)所以四边形MNPE的面积S

    19、PNMN2(m2). (5分)(2) 解法1 设EFD,由条件,知EFPEFDFEP.所以PF,NPNFPF3,ME3.(8分)由得(*)所以四边形MNPE面积为S(NPME)MN 2 6 6 6 (12分) 6262.当且仅当tan,即tan,时取“”(14分)此时,(*)成立答:当EFD时,沿直线PE裁剪,四边形MNPE面积最大,最大值为(62) m2.(16分)5、(2016镇江期末)如图,某工业园区是半径为10km的圆形区域,离园区中心O点5km处有一中转站P,现准备在园区内修建一条笔直公路AB经过中转站,公路AB把园区分成两个区域(1) 设中心O对公路AB的视角为,求的最小值,并求较

    20、小区域面积的最小值;(2) 为方便交通,准备过中转站P在园区内再修建一条与AB垂直的笔直公路CD,求两条公路长度和的最小值 规范解答 (1) 如图1,作OHAB,设垂足为H,记OHd,2AOH,因为cosAOH,(1分)要使有最小值,只需要d有最大值,结合图像可得,dOP5 km,(3分)当且仅当ABOP时,dmax5 km.此时min2AOH2.(4分)设AB把园区分成两个区域,其中较小区域面积记为S,由题意得Sf()S扇形SAOB50(sin),(6分)f()50(1cos)0恒成立,所以f()为增函数,(7分)所以Sminf50 km2.(8分)答:视角的最小值为,较小区域面积的最小值是

    21、50km2.(9分)图1(2) 如图2,过O分别作OHAB,OH1CD,垂足分别是H,H1,记OHd1,OH1d2,由(1)可知d10,5,所以ddOP225,且d25d,(10分)因为AB2,CD2,所以ABCD2() 2(),(11分)记L(d1)ABCD2(),可得L2(d1)41752,(12分)由d0,25,可知d0或d25时,L2(d1)的最小值是100(74),从而ABCD的最小值是(2010) km.(13分)答:两条公路长度和的最小值是(2010) km.(14分)图26、(2018扬州期末)如图,射线OA和OB均为笔直的公路,扇形OPQ区域(含边界)是一蔬菜种植园,其中P,

    22、Q分别在射线OA和OB上经测量得,扇形OPQ的圆心角(即POQ)为、半径为1千米,为了方便菜农经营,打算在扇形OPQ区域外修建一条公路MN,分别与射线OA,OB交于M,N两点,并要求MN与扇形弧相切于点S.设POS(单位:弧度),假设所有公路的宽度均忽略不计(1) 试将公路MN的长度表示为的函数,并写出的取值范围;(2) 试确定的值,使得公路MN的长度最小,并求出其最小值规范解答 (1) 因为MN与扇形弧相切于点S,所以OSMN.在RtOSM中,因为OS1,MOS,所以SMtan.在RtOSN中,NOS,所以SNtan,所以MNtantan,(4分)其中.(6分)(2) 解法1(基本不等式)

    23、因为0.令ttan10,则tan(t1),所以MN.(8分)由基本不等式得MN2,(10分)当且仅当t,即t2时取“”(12分)此时tan,由于,故.(13分)解法2(三角函数) MN.(10分)因为,所以2,故sin1,(12分)所以当sin1,即时,MNmin2.(13分)答:(1) MN,其中;(2) 当时,MN的长度最小,为2千米(14分)(注:第(2)问中最小值对,但第(1)问定义域不对的扣2分)7、某市近郊有一块400m400m正方形的荒地,准备在此荒地上建一个综合性休闲广场,需先建造一个总面积为3000 m2的矩形场地(如图所示) 图中,阴影部分是宽度为2 m的通道,三个矩形区域

    24、将铺设塑胶地面作为运动场地(其中两个小矩形场地形状、大小相同),塑胶运动场地总面积为S m2(1)求S关于x的函数关系式,并给出定义域;(2)当x为何值时S取得最大值,并求最大值aax米(第17题) 解析 (1)设矩形场地的另一条边的长为y,则xy3000即y,且7.5x400S(x4)a+(x6)a(2x10)a因为2a + 6y,所以a33, 所以S(2x10)3030,其定义域是(7.5,400)(2)S303030302303023002430当且仅当6x,即x50(7.5,400)时,上述不等式等号成立,此时x50,Smax2430(m2) 答:当x50m时,S取得最大值,其最大值为2430m2 16 / 16

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:历年高考数学真题汇编专题16-以基本不等式为背景的应用题(解析版)(DOC 15页).docx
    链接地址:https://www.163wenku.com/p-5700264.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库