历年高考抛物线真题详解理科(DOC 18页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《历年高考抛物线真题详解理科(DOC 18页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 历年高考抛物线真题详解理科DOC 18页 历年 高考 抛物线 详解 理科 DOC 18 下载 _各科综合_高中
- 资源描述:
-
1、word历年高考抛物线真题详解理科1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D102.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )(A)(B)(C)(D)13.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )(A)(B)(C)(D)14.【2016高考新课
2、标1卷】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)85.【2015高考四川,理10】设直线l与抛物线相交于A,B两点,与圆相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )(A)(B)(C)(D)6.【2015高考浙江,理5】如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,其中点,在抛物线上,点在轴上,则与的面积之比是( )A. B. C. D. 7. 【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则
3、8.【2016高考天津理数】设抛物线,(t为参数,p0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(p,0),AF与BC相交于点E.若|CF|=2|AF|,且ACE的面积为,则p的值为_.10.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.()求抛物线C的方程,并求其焦点坐标和准线方程;()求证:A为线段BM的中点.11.【2016高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy中,已知直线,抛物线(1)若直线l过抛物线C
4、的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.求证:线段PQ的中点坐标为;求p的取值范围.12.【2017浙江,21】(本题满分15分)如图,已知抛物线,点A,抛物线上的点过点B作直线AP的垂线,垂足为Q()求直线AP斜率的取值范围;()求的最大值13.【2016高考新课标3理数】已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点(I)若在线段上,是的中点,证明;(II)若的面积是的面积的两倍,求中点的轨迹方程.1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,
5、直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A16B14C12D10【答案】A【解析】试题分析:设,直线方程为联立方程得同理直线与抛物线的交点满足由抛物线定义可知当且仅当(或)时,取得等号.【考点】抛物线的简单性质2.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点,且=2,则直线OM的斜率的最大值为( )(A)(B)(C)(D)1【答案】C【解析】试题分析:设(不妨设),则由已知得,故选C.考点:抛物线的简单的几何性质,基本不等式的应用3.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线上任意一点,M是线段PF上的点
6、,且=2,则直线OM的斜率的最大值为( )(A)(B)(C)(D)1【答案】C【解析】试题分析:设(不妨设),则由已知得,故选C.考点:抛物线的简单的几何性质,基本不等式的应用【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点的坐标,利用向量法求出点的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把斜率用参数表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值4.【2016高考新课标1卷】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2
7、(B)4 (C)6 (D)8【答案】B【解析】考点:抛物线的性质。【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.5.【2015高考四川,理10】设直线l与抛物线相交于A,B两点,与圆相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是( )(A)(B)(C)(D)【答案】D【解析】显然当直线的斜率不存在时,必有两条直线满足题设.当直线的斜率存在时,设斜率为.设,则,相减得.由于,所以,即.圆心为,由得,所以,即点M必在直线上.将代入得.因为点M
8、在圆上,所以.又(由于斜率不存在,故,所以不取等号),所以.选D.利用这个范围即可得到r的取值范围。6.【2015高考浙江,理5】如图,设抛物线的焦点为,不经过焦点的直线上有三个不同的点,其中点,在抛物线上,点在轴上,则与的面积之比是( )A. B. C. D. 【答案】A.【解析】,故选A.【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不
展开阅读全文