2019年度高考物理第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年度高考物理第十三章热学专题强化十四应用气体实验定律解决“三类模型问题”学案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年度 高考 物理 第十三 热学 专题 强化 十四 应用 气体 实验 定律 解决 模型 问题 下载 _各科综合_高中
- 资源描述:
-
1、专题课件专题强化十四应用气体实验定律解决“三类模型问题”专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题.2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法.3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等.命题点一“玻璃管液封”模型1.三大气体实验定律(1)玻意耳定律(等温变化):p1V1p2V2或pVC(常数).(2)查理定律(等容变化):或C(常数).(3)盖吕萨克定律(等压变化):或C(常数).2.利用气体实验定律及气态方程解决问题
2、的基本思路3.玻璃管液封模型求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:(1)液体因重力产生的压强大小为pgh(其中h为至液面的竖直高度);(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;(3)有时可直接应用连通器原理连通器内静止的液体,同种液体在同一水平面上各处压强相等;(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.类型1单独气体问题例1(2017全国卷33(2)一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M的上端和下端分别连通两竖直玻璃细管K1和K2.K1长为l,顶端封闭,K2上端与待测气体连通;M下端经橡皮软管与充
3、有水银的容器R连通.开始测量时,M与K2相通;逐渐提升R,直到K2中水银面与K1顶端等高,此时水银已进入K1,且K1中水银面比顶端低h,如图(b)所示.设测量过程中温度、与K2相通的待测气体的压强均保持不变.已知K1和K2的内径均为d,M的容积为V0,水银的密度为,重力加速度大小为g.求:图1(1)待测气体的压强;(2)该仪器能够测量的最大压强.答案(1)(2)解析(1)水银面上升至M的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V,压强等于待测气体的压强p.提升R,直到K2中水银面与K1顶端等高时,K1中水银面比顶端低h;设此时封闭气体的压强为p1,体积为V1,则VV0d2lV1
4、d2h由力学平衡条件得p1pgh整个过程为等温过程,由玻意耳定律得pVp1V1联立式得p(2)由题意知hl联立式有p该仪器能够测量的最大压强为pmax变式1(2015全国卷33(2)如图2,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l10.0 cm,B侧水银面比A侧的高h3.0 cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h110.0 cm时将开关K关闭.已知大气压强p075.0 cmHg.图2(1)求放出部分水银后A侧空气柱的长度;(2)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管
5、内的长度.答案(1)12.0 cm(2)13.2 cm解析(1)以cmHg为压强单位.设A侧空气柱长度l10.0 cm时的压强为p;当两侧水银面的高度差为h110.0 cm时,空气柱的长度为l1,压强为p1.由玻意耳定律得plp1l1由力学平衡条件得pp0h打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有p1p0h1联立式,并代入题给数据得l112.0 cm(2)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律
6、得plp2l2由力学平衡条件有p2p0联立式,并代入题给数据得l210.4 cm设注入的水银在管内的长度为h,依题意得h2(l1l2)h1联立式,并代入题给数据得h13.2 cm.类型2关联气体问题例2(2016全国卷33(2)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p075.0 cmHg.环境温度不变.(保留三位有效数字)图3答案144 cmHg9.
7、42 cm解析设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2p0,长度为l2.活塞被下推h后,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2,长度为l2.以cmHg为压强单位.由题给条件得p1p0(20.05.00) cmHg90 cmHgl120.0 cml1(20.0) cm12.5 cm由玻意耳定律得p1l1Sp1l1S联立式和题给条件得p1144 cmHg依题意p2p1l24.00 cm cmh11.5 cmh由玻意耳定律得p2l2Sp2l2S联立式和题给条件得h9.42 cm.变式2如图4所示,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均
8、为0 的水槽中,B的容积是A的3倍.阀门S将A和B两部分隔开.A内为真空,B和C内都充有气体.U形管内左边水银柱比右边的低60 mm.打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等.假设U形管和细管中的气体体积远小于玻璃泡的容积.图4(1)求玻璃泡C中气体的压强(以mmHg为单位);(2)将右侧水槽中的水从0 加热到一定温度时,U形管内左右水银柱高度差又为60 mm,求加热后右侧水槽的水温.答案(1)180 mmHg(2)364 K解析(1)在打开阀门S前,两水槽水温均为T0273 K.设玻璃泡B中气体的压强为p1,体积为VB,玻璃泡C中气体的压强为pC,依题意有p1pCp式中p60
9、mmHg.打开阀门S后,两水槽水温仍为T0,设玻璃泡B中气体的压强为pB,依题意,有pBpC玻璃泡A和B中气体的体积V2VAVB根据玻意耳定律得p1VBpBV2联立式,并代入已知数据得pCp180 mmHg(2)当右侧水槽的水温加热至T时,U形管左右水银柱高度差为p,玻璃泡C中气体的压强pCpBp玻璃泡C中的气体体积不变,根据查理定律得联立式,并代入题给数据得T364 K.命题点二“汽缸活塞类”模型汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.1.一般思路(1)确定研究对象,一般地说,研究对象分
10、两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.(4)多个方程联立求解.对求解的结果注意检验它们的合理性.2.常见类型(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题.(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题.(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究
11、各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程.类型1单独气体问题例3(2015全国卷33(2)如图5,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m12.50 kg,横截面积为S180.0 cm2;小活塞的质量为m21.50 kg,横截面积为S240.0 cm2;两活塞用刚性轻杆连接,间距保持为l40.0 cm;汽缸外大气的压强为p1.00105 Pa,温度为T3
12、03 K.初始时大活塞与大圆筒底部相距,两活塞间封闭气体的温度为T1495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g取 10 m/s2.求:图5(1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度;(2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.答案(1)330 K(2)1.01105 Pa解析(1)大小活塞在缓慢下移过程中,受力情况不变,汽缸内气体压强不变,由盖吕萨克定律得初状态V1(S1S2),T1495 K末状态V2lS2代入可得T2T1330 K(2)对大、小活塞受力分析则有m1gm2gpS1p1S2p1S1pS
13、2可得p11.1105 Pa缸内封闭的气体与缸外大气达到热平衡过程中,气体体积不变,由查理定律得T3T303 K,解得p21.01105 Pa.变式3如图6所示,两端开口的汽缸水平固定,A、B是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S120 cm2,S210 cm2,它们之间用一根水平细杆连接,B通过水平细绳绕过光滑的轻质定滑轮与质量为M2 kg的重物C连接,静止时汽缸中的气体温度T1600 K,汽缸两部分的气柱长均为L,已知大气压强p01105 Pa,取g10 m/s2,缸内气体可看做理想气体.图6(1)活塞静止时,求汽缸内气体的压强;(2)若降低汽缸内气体的温度,当活塞A缓慢
展开阅读全文