全国卷高考大纲(数学文科).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全国卷高考大纲(数学文科).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国卷 高考 大纲 数学 文科 下载 _各科综合_高中
- 资源描述:
-
1、2019年全国卷高考大纲(数学文科)考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度考试要求2019年普通高等学校招生全国统一考试大纲(文科)中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2019年颁布的全日制普通高级中学课程计划和全日制普通高级中学数学教学大纲的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意
2、命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能一、考试内容的知识要求、能力要求和个性品质要求1知识要求知识是指全日制普通高级中学数学教学大纲所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变
3、形、推断,并能利用知识解决有关问题(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题2能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述数学是一门思维的科学,思维能力是数学学科能力的核心数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体(2)
4、运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算运算能力是思维能力和运算技能的结合运算包括对数值的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。(3)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表
5、等手段形象地揭示问题的本质空间想象能力是对空间形式的观察、分析、抽象的能力主要表现为识图、画图和对图形的想象能力识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换;对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模式;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和
6、说明实践能力是将客观事物数学化的能力主要过程是依据现实的生活背景,提炼相关的数量关系,构想数学模式,将现实问题转化为数学问题,并加以解决(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题创新意识是理性思维的高层表现对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强3个性品质要求个性品质是指考生个体的情感、态度和价值观要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇
7、尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神二、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架(1)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面从学科的整体高度和思维价值的
8、高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的
9、广度和深度以及进一步学习的潜能对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合(4)对实践能力的考查主要采用解决应用问题的形式命题时要坚持“贴进生活,背景公平,控制难度”的原则,试题设计要切合我国中学数学教学的实际,考虑考生的年龄特点和实
10、践经验,使数学应用问题的难度符合考生的水平(5)对创新意识的考查是对高层次理性思维的考查在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求考试内容1平面向量考试内容:向量向量的加法与减法实数与
11、向量的积平面向量的坐标表示线段的定比分点平面向量的数量积平面两点间的距离平移考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念(2)掌握向量的加法和减法(3)掌握实数与向量的积,理解两个向量共线的充要条件(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用掌握平移公式2集合、简易逻辑考试内容:集合子集补集交集并集逻辑联结词四种命题充分条件和必要条件考试要求:
12、(1)理解集合、子集、补集、交集、并集的概念了解空集和全集的意义了解属于、包含、相等关系的意义掌握有关的术语和符号,并会用它们正确表示一些简单的集合(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系掌握充分条件、必要条件及充要条件的意义3函数考试内容:映射函数函数的单调性奇偶性反函数互为反函数的函数图像间的关系指数概念的扩充有理指数幂的运算性质指数函数对数对数的运算性质对数函数函数的应用考试要求:(1)了解映射的概念,理解函数的概念(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简
13、单函数的反函数(4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图像和性质(5)理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题4不等式考试内容:不等式不等式的基本性质不等式的证明不等式的解法含绝对值的不等式考试要求:(1)理解不等式的性质及其证明(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用(3)掌握分析法、综合法、比较法证明简单的不等式(4)掌握简单不等式的解法(5)理解不等式aba+ba+b5三角函数考试内容:角的概念的推广弧度制任
14、意角的三角函数单位圆中的三角函数线同角三角函数的基本关系式:sin2+cos2=1,sin/cos=tan,tancot=1正弦、余弦的诱导公式两角和与差的正弦、余弦、正切二倍角的正弦、余弦、正切正弦函数、余弦函数的图像和性质周期函数函数y=Asin(x+)的图像正切函数的图像和性质已知三角函数值求角正弦定理余弦定理斜三角形解法考试要求:(1)了解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算(2)理解任意角的正弦、余弦、正切的定义了解余切、正割、余割的定义;掌握同角三角函数的基本关系式掌握正弦、余弦的诱导公式了解周期函数与最小正周期的意义(3)掌握两角和与两角差的正弦、余弦、正切公式
展开阅读全文