2020版高考数学第三章导数在研究函数中的应用(第4课时)函数与导数压轴大题的3大难点及破解策略讲义.docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2020版高考数学第三章导数在研究函数中的应用(第4课时)函数与导数压轴大题的3大难点及破解策略讲义.docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 高考 数学 第三 导数 研究 函数 中的 应用 课时 压轴 大难 破解 策略 讲义 下载 _各科综合_高中
- 资源描述:
-
1、第4课时难点自选函数与导数压轴大题的3大难点及破解策略隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程将无法继续进行但可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫做隐零点;若x0容易求出,就叫做显零点,而后解答就可继续进行实际上,此解法类似于解析几何中“设而不求”的方法典例设函数f(x)exax2.(1)求f(x)的单调区间
2、;(2)若a1,k为整数,且当x0时,(xk)f(x)x10,求k的最大值解题观摩(1)当a0时,f(x)的单调递增区间是(,),无单调递减区间;当a0时,函数f(x)的单调递减区间是(,ln a),单调递增区间是(ln a,)(解答过程略)(2)由题设可得(xk)(ex1)x10,即k0)恒成立令g(x)x(x0),得g(x)1(x0)由(1)的结论可知,函数h(x)exx2(x0)是增函数又因为h(1)0,所以函数h(x)的唯一零点(1,2)(该零点就是h(x)的隐零点)当x(0,)时,g(x)0,所以g(x)ming().又e2且(1,2),则g(x)ming()1(2,3),所以k的最
3、大值为2.题后悟通本题的关键就是利用h(x)exx2及h(1)0确定h(x)的隐零点,从而作出判断针对训练1已知函数f(x).(1)求函数f(x)的零点及单调区间;(2)求证:曲线y存在斜率为6的切线,且切点的纵坐标y00上有解构造辅助函数g(x)1ln x6x2(x0),g(x)12x0,函数g(x)在(0,)上单调递减,且g(1)50,所以x0,使得g(x0)0.即证明曲线y存在斜率为6的切线设切点坐标为(x0,f(x0),则f(x0)6x0,x0.令h(x)6x,x.由h(x)在区间上单调递减,则h(x)h1,所以y0f(x0)1.极值点偏移问题在近几年的高考中,极值点偏移问题常作为压轴
4、题出现,题型复杂多变,面对此类问题时常会感到束手无策事实上,只要掌握这类问题的实质,巧妙消元、消参、构造函数,问题便能迎刃而解1极值点偏移的含义若单峰函数f(x)的极值点为x0,则极值点的偏移问题的图示及函数值的大小关系如下表所示.极值点x0函数值的大小关系图示极值点不偏移x0f(x1)f(2x0x2)极值点偏移左移x0峰口向上:f(x1) f(2x0x2)右移x0峰口向上:f(x1) f(2x0x2)峰口向下:f(x1)2x0(x0为函数f(x)的极值点);(2)若在函数f(x)的定义域上存在x1,x2(x1x2)满足f(x1)f(x2),求证:x1x22x0(x0为函数f(x)的极值点);
5、(3)若函数f(x)存在两个零点x1,x2(x1x2),令x0,求证:f(x0)0;(4)若在函数f(x)的定义域上存在x1,x2(x1x2)满足f(x1)f(x2),令x0,求证:f(x0)0.典例已知函数f(x)ln xax(x0),a为常数,若函数f(x)有两个零点x1,x2(x1x2)证明:x1x2e2.解题观摩法一:(抓极值点构造函数)由题意,函数f(x)有两个零点x1,x2(x1x2),即f(x1)f(x2)0,易知ln x1,ln x2是方程xaex的两根设t1ln x1,t2ln x2,g(x)xex,则g(t1)g(t2),从而x1x2e2ln x1ln x22t1t22.下
6、证:t1t22.g(x)(1x)ex,易得g(x)在(,1)上单调递增,在(1,)上单调递减,所以函数g(x)在x1处取得极大值g(1).当x时,g(x);当x时,g(x)0且g(x)0.由g(t1)g(t2),t1t2,不妨设t1t2,作出函数g(x)的图象,如图所示,由图知必有0t110,所以F(x)在(0,1上单调递增,所以F(x)F(0)0对任意的x(0,1恒成立,即g(1x)g(1x)对任意的x(0,1恒成立由0t11g(1(1t1)g(t1)g(t2),即g(2t1)g(t2),又2t1,t2(1,),且g(x)在(1,)上单调递减,所以2t12,即x1x2e2.点评上述解题过程就
7、是解决极值点偏移问题的最基本的方法,共有四个解题要点:(1)求函数g(x)的极值点x0;(2)构造函数F(x)g(x0x)g(x0x);(3)确定函数F(x)的单调性;(4)结合F(0)0,确定g(x0x)与g(x0x)的大小关系口诀记忆极值偏离对称轴,构造函数觅行踪,四个步骤环相扣,两次单调紧跟随法二:(巧抓“根差”stt2t1构造函数)由题意,函数f(x)有两个零点x1,x2(x1x2),即f(x1)f(x2)0,易知ln x1,ln x2是方程xaex的两根设t1ln x1,t2ln x2,设g(x)xex,则g(t1)g(t2),从而x1x2e2ln x1ln x22t1t22.下证:
展开阅读全文
链接地址:https://www.163wenku.com/p-5699919.html